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Abstract

Trajectory prediction is a critical task with ap-1

plications spanning intelligent transportation sys-2

tems, urban planning, and autonomous naviga-3

tion. Existing approaches often struggle to bal-4

ance computational efficiency, predictive accuracy,5

and adaptability to varying trajectory lengths. In6

this work, we propose TEMPT (TrajEctory Mix-7

ing decomPosiTion), a novel framework that pi-8

oneers the integration of adaptive patch-based in-9

put representation, multi-scale decomposition, and10

lightweight MLP-based architecture for trajectory11

prediction. Unlike conventional approaches that12

rely on rigid architectures or computationally inten-13

sive mechanisms like attention, TEMPT introduces14

a simple-yet-effective dynamic weighted aggrega-15

tion mechanism to seamlessly process variable-16

length trajectories while preserving critical spatial-17

temporal dependencies. By lightweight MLP mix-18

ing for trajectory data and a prediction-residual-19

based loss function, TEMPT effectively captures20

spatial-temporal dependencies and ensures robust21

predictions. Extensive experiments on real-world22

traffic datasets demonstrate that TEMPT not only23

achieves state-of-the-art accuracy but also signifi-24

cantly reduces computational costs, making it ideal25

for real-time applications on resource-constrained26

platforms. This work sets a new benchmark for ef-27

ficient, adaptive, and scalable trajectory prediction.28

1 Introduction29

Trajectory prediction is a fundamental task with significant30

importance in modern intelligent systems [Shi et al., 2023;31

Gu et al., 2023]. With the proliferation of GPS-enabled de-32

vices, vast amounts of trajectory data are being generated33

daily, presenting both opportunities and challenges for un-34

derstanding and utilizing this information. Accurate trajec-35

tory prediction plays a crucial role in numerous applications,36

such as navigation systems [Xu et al., 2022a], urban planning37

[Ma et al., 2019], and traffic management [Li et al., 2021].38

For instance, predicting the future movements of vehicles can39

help optimize traffic flow, reduce congestion, and enhance40

safety. In addition, trajectory prediction enables personal- 41

ized location-based services, improving user experiences in 42

areas like ride-hailing and delivery logistics [Shi et al., 2022; 43

Xu et al., 2022b]. Despite its broad applicability, the task 44

remains challenging due to the complexity and variability of 45

human mobility patterns, which are influenced by dynamic 46

factors such as time, weather, and personal preferences. 47

Recent advancements in GPS trajectory prediction research 48

have explored various methodologies to address the chal- 49

lenges of this task. Early approaches to trajectory prediction 50

heavily relied on statistical methods, such as Hidden Markov 51

Models [Mathew et al., 2012] and Gaussian Processes [Wang 52

et al., 2007]. These models are effective in capturing spa- 53

tial and temporal correlations in structured data. Nonetheless, 54

their limited scalability and inability to handle complex, non- 55

linear patterns in real-world trajectories have motivated the 56

search for more advanced solutions. With the rise of deep 57

learning, neural networks have become a dominant approach 58

in trajectory prediction. Recurrent neural networks have been 59

widely used for modeling sequential data [Zhou et al., 2018]. 60

Recently, attention mechanisms and Transformer-based mod- 61

els have further improved the ability to capture long-range 62

dependencies in trajectory data [Liang et al., 2022]. These 63

models excel in scenarios where large-scale data with intri- 64

cate spatial-temporal patterns is available. 65

Despite the progress made in GPS trajectory prediction, 66

several open challenges hinder its practical application. First, 67

the general trend of current models is being increasingly com- 68

plex and computationally intensive, making them unsuitable 69

for deployment on edge devices such as low-resource robots 70

or mobile systems. These models often require significant 71

computational resources and power, making real-time pre- 72

diction infeasible in constrained environments. Achieving a 73

balance between computational efficiency and predictive ac- 74

curacy is essential for practical applications. Second, most 75

existing models rely on processing trajectories of a fixed, pre- 76

defined length. This rigidity introduces inefficiencies: overly 77

long trajectories may lose critical semantic details during pre- 78

processing (truncation), leading to degraded predictive per- 79

formance, while shorter trajectories often result in unneces- 80

sary computation, reducing model efficiency. Furthermore, 81

this fixed-length assumption fails to accommodate the dy- 82

namic and heterogeneous nature of real-world trajectory data, 83

where variability in trajectory length is common. Addressing 84



these challenges requires innovative model architectures that85

are lightweight, adaptive, and capable of dynamically man-86

aging trajectory lengths to maximize both computational ef-87

ficiency and predictive effectiveness.88

To address these challenges, we propose TrajEctory89

Mixing decomPosiTion (TEMPT), a lightweight and adap-90

tive solution for trajectory prediction. Following the princi-91

ple of time-series decomposition [Huang et al., 1998; Wen92

et al., 2019], we intensively utilize the straightforward multi-93

layer perceptron (MLP) structure for trajectory representation94

learning and predictive decoding, such that the training and95

inference processes can be greatly accelerated. Additionally,96

we propose a simple-yet-highly-effective trainable weighted97

representation aggregation mechanism to project the variable-98

length trajectory embeddings into a unified representation99

space, i.e., the model takes trajectories with variable length100

and generate high quality predictions. The proposed TEMPT101

aims to strike a balance between efficiency, scalability, and102

accuracy, making it suitable for diverse real-world applica-103

tions, from autonomous systems to smart city infrastructures.104

The main contributions of this paper are threefold:105

• Lightweight Model Design: We present a lightweight GPS106

trajectory prediction model, TEMPT, that maintains high107

prediction accuracy while being computationally efficient,108

enabling real-time application with limited resources.109

• Adaptive Handling of Variable-Length Trajectories:110

The proposed TEMPT dynamically processes variable-111

length input data using a patch-based approach, perform-112

ing mixing operations within each patch, thereby improv-113

ing prediction and facilitating an understanding of the con-114

tribution of trajectory patches to the final forecast.115

• State-of-the-Art Performance: The proposed TEMPT116

demonstrates superior performance compared to both com-117

plex state-of-the-art architectures and naı̈ve baseline pre-118

dictions, validating its effectiveness and practicality.119

The remainder of this paper is structured as follows. Sec-120

tion 2 presents a brief review of related work on trajectory121

prediction and Section 3 introduces the preliminaries. In Sec-122

tion 4, we elaborate on the design and details of the proposed123

TEMPT. Empirical results and comparisons to state-of-the-art124

baselines are summarized and discussed in Section 5. Finally,125

Section 6 concludes this paper.126

2 Related Work127

In this section, we present a summary on the related work of128

trajectory prediction. Trajectories, as a special form of time-129

series, may have their analytical methods inspired from time-130

series mining approaches. Therefore, we also briefly sum-131

marize existing time-series prediction methods. Finally, one132

of the major techniques adopted by TEMPT is introduced,133

namely, MLP-Mixer.134

2.1 Trajectory prediction135

As a type of multivariate time series data, trajectories play a136

fundamental role in motion-related scenarios. Trajectory pre-137

diction is crucial for many applications, particularly in au-138

tonomous driving, logistics and delivery optimization, and139

drone navigation. Trajectory prediction tasks can be cat- 140

egorized into three main types based on the raw data uti- 141

lized: vision-based, GPS-based, and multi-modal. Vision- 142

based prediction – as explored in works like [Gu et al., 2023; 143

Gu et al., 2021; Liao et al., 2024] – relies on the autonomous 144

vehicle’s perception system, where the basic unit is the pixel 145

in an image. This approach mirrors a human driver’s perspec- 146

tive, enabling intelligent driving control through visual inter- 147

actions. GPS-based prediction, as seen in studies like [Liang 148

and Zhao, 2021; Ip et al., 2021; Wang and Feng, 2024], uses 149

GPS sensors to capture the movement of vehicles on roads. 150

Here, the basic unit is a 2D coordinate on a map, offering a 151

straightforward view of driving behavior1. Multi-modal pre- 152

diction combines different data modalities, such as graphs 153

[Bae et al., 2022], language [Bae et al., 2024], and cross- 154

modal models [Choi et al., 2021], to improve prediction ac- 155

curacy and robustness. 156

Apart from the types of input data, the prediction mod- 157

els themselves also vary. RNN-based methods are commonly 158

used for sequential data processing and are effective for tra- 159

jectory prediction [Zhou et al., 2018]. However, they suf- 160

fer from vanishing gradient issues, making it challenging to 161

capture long-range dependencies, and their sequential nature 162

leads to slower training and inference compared to paralleliz- 163

able architectures. In recent years, Transformers have been 164

widely adopted for trajectory analysis tasks due to their abil- 165

ity to capture long-range dependencies in data [Zhou et al., 166

2021]. Despite their advantages, transformers are compu- 167

tationally intensive, requiring significant memory and pro- 168

cessing power, which can limit their feasibility for resource- 169

intensive applications [Zeng et al., 2023]. Trajectory predic- 170

tion, like other time series tasks, benefits from simple yet ef- 171

ficient models, especially in scenarios with limited computa- 172

tional resources or where quick feedback is essential. 173

2.2 Time-series analysis 174

Indeed, the past decade witnessed a plethora of efforts on 175

time-series data analysis, and trajectory prediction, as a spe- 176

cialized time-series task, may benefit from these develop- 177

ments. Recurrent Neural Networks (RNN) [Bai et al., 2018], 178

Convolutional Neural Networks (CNN) [Liu et al., 2022; 179

Wu et al., 2023], Transformers [Nie et al., 2023; Zhang and 180

Yan, 2023; Zhou et al., 2022], and their variants [Wang et al., 181

2023] have been widely explored to model time series data 182

for tasks such as forecasting, classification, and imputation. 183

These methods have contributed significantly to advancing 184

the understanding and application of time-series models in 185

various domains. 186

However, as model architectures become increasingly 187

complex, efficiency concerns have emerged. Deep learn- 188

ing models often require extensive computational resources 189

[Menghani, 2023], which may not be practical for real- 190

world trajectory prediction tasks when latency and resource 191

constraints are critical. Furthermore, the interpretability 192

of complex models remains an ongoing challenge, limiting 193

their adoption in applications requiring high levels of trans- 194

1We use “trajectory” and “GPS trajectory” interchangably in the
sequel without loss of generality.



TEMPT
Layer

Prediction

Residual

Patching
Block

Patch
Mixer

Prediction
Head

Decomposition Head

Trajectory

Trajectory Patches
Patch Repr. Patch Repr. Prediction

Component

FC
L

G
EL

U

FC
L

SD FC
L

G
EL

U

FC
L

SD

Feature Mixing Sequence Mixing
TEMPT Overview Patch Mixer

TEMPT Layer Workflow
Figure 1: The proposed TEMPT framework.

parency. Interestingly, simpler methods, such as MLP-based195

approaches [Zeng et al., 2023], have demonstrated that it is196

possible to achieve effective performance with minimal com-197

plexity. These approaches leverage the inherent patterns in198

time-series data without the overhead of sophisticated archi-199

tectures. Their success highlights the potential for rethinking200

model design principles to prioritize simplicity and efficiency201

without sacrificing accuracy.202

2.3 MLP-Mixer203

Recent years have seen a resurgence of interest in MLP-based204

methods (e.g., MLP-Mixer) because of their simplicity and205

effectiveness [Zhong et al., 2024; Nie et al., 2024]. MLP-206

based mixers, such as the MLP-Mixer, utilize linear layers207

to perform mixing operations across specific dimensions of208

input data, such as spatial or temporal dimensions. These209

mixers are designed to handle structured data by alternating210

operations that separately process different dimensions, pre-211

serving the inherent relationships within the data. This de-212

sign has regained attention due to its simplicity, scalability,213

and ability to deliver competitive performance in tasks like214

time series analysis and image recognition, without relying215

on complex mechanisms such as convolutions or attention.216

While recent studies have demonstrated that MLP-based217

architectures can serve as strong baselines for time-series218

analysis [Zeng et al., 2023; Chen et al., 2023; Zhong et al.,219

2024], applying them directly to trajectory prediction faces220

significant challenges due to that trajectory prediction in-221

volves unique characteristics, e.g., variable length, that stan-222

dard MLPs are not designed to address effectively.223

3 Preliminaries224

In this section, we formally define the concepts related to tra-225

jectory prediction and describe the problem in detail.226

Definition 1 (GPS Trajectory). A GPS trajectory is a se-227

quence of consecutively sampled GPS points, denoted as X =228

{p1, . . . , pM}. Each point pi = [loni, lati], i ∈ {1, . . . ,M},229

represents the longitude and latitude of a vehicle’s location.230

The trajectory captures the spatial movement of the vehicle as231

it progresses through a series of geographic positions, pro-232

viding a fundamental representation of movement in spatial233

analysis.234

In this paper, we consider trajectories sampled at evenly 235

spaced intervals. For non-evenly sampled trajectories, the 236

timestamps can be incorporated as additional features in the 237

input data to account for temporal irregularities. 238

Problem 1 (Trajectory Prediction). Given a sequence of his- 239

torical GPS points Xhist = {p1, . . . , pT }, where T is the num- 240

ber of historical points, the goal of trajectory prediction is to 241

forecast the future GPS points Xfuture = {pT+1, . . . , pT+H}. 242

Here, H represents the number of future points to predict. 243

This task involves learning the spatial dependencies and 244

movement patterns present in the historical trajectory data 245

to generate accurate predictions for future positions. 246

4 Trajectory Mixing Decomposition 247

This section presents the technical details of the proposed tra- 248

jectory prediction framework, referred to as TEMPT, illus- 249

trated in Figure 1. TEMPT introduces a simple yet powerful 250

architecture based on the MLP structure. One of TEMPT’s 251

key features is its reliance on structured mixing operations to 252

accomplish the trajectory prediction task, effectively elimi- 253

nating the need for complex temporal techniques (e.g., RNNs, 254

LSTMs, or self-attention) while maintaining lower complex- 255

ity with respect to sequence length. 256

4.1 TEMPT Overview 257

TEMPT consists of a stack of L TEMPT Layers, learning to 258

decompose the input trajectory X into L decomposed com- 259

ponents {C1, ...,CL}. Formally, let Z0 = X , we have 260

Zi = Zi−1 −
i∑

j=1

Cj , i = 1, ..., L, (1)

such that Zi specifies the intermediate residual of the trajec- 261

tory after the first i components have been decomposed (re- 262

moved) from the input X . From the data decomposition per- 263

spective, the whole process is depicted in Figure 2 and can be 264

viewed as 265

X =

L∑
i=1

Ci +R, (2)

where R denotes the final residual, or data noise. Indeed, de- 266

composing trajectory data into multiple orthogonal compo- 267

nents provides a robust mechanism for extracting multi-scale 268



representations, enabling the model to capture both coarse269

and fine-grained patterns effectively. This decomposition fa-270

cilitates learning by reducing the complexity inherent in raw271

trajectory data, allowing the model to focus on disentangled,272

meaningful features. This hypothesis is also verified by em-273

pirical results in Section 5.274

Trajectory Components Residual

Observation

...

Prediction

...

Trajectory
Prediction

Predicted
Components

Figure 2: Illustrative example of trajectory prediction with decom-
position.

Taking this principle of trajectory decomposition, TEMPT275

extracts the multi-scale representation Hi of input trajectory276

by patching and mixing blocks, and decompose the corre-277

sponding principal trajectory components accordingly using278

a decomposition projection head. With the latent represen-279

tation, the trajectory prediction task can thereby be accom-280

plished with another prediction projection head:281

Hi = PATCHMIX(Zi), i = 1, . . . , L, (3)
Ci,t+1:t+H = PREDHEAD(Hi), (4)

Ci = RECONHEAD(Hi), (5)
Zt+1 =Zt −Ci. (6)

In the sequel, we introduce the detailed implementation of282

TEMPT.283

4.2 Trajectory Patching Block284

Given input Zi, each TEMPT Layer first transforms the se-285

quence of length m into trajectory patches with patch size Pi.286

The patching operation is achieved by segmenting Zi along287

the temporal dimension into non-overlapping patches with288

stride Pi. The result of this transformation is a high dimen-289

sional tensor Pi of shape Ni ×Pi ×F , where Ni = ⌈M/Pi⌉290

and F = 2 is the feature dimensionality.291

4.3 Feature and Sequence Mixing292

After the transformation, Pi is passed to the patch mixer293

block, a fundamental component of TEMPT designed to pro-294

cess trajectory data by integrating both feature and sequence295

mixing operations. Either operation is based exclusively on296

MLPs along the feature and sequence dimension, respec-297

tively. The design of mixing operation is depicted in Figure298

1, where two fully connected layers are stacked with a GELU299

non-linear activation in between, a final Stochastic Depth to300

deactivate selected layers during training for robustness and 301

acceleration, and a residual link governing the identity map- 302

ping of the operation. The final output after both mixing is 303

denoted by Mi 304

While these two mixing operations share the same archi- 305

tecture, they are designed to capture the latent representation 306

from different perspectives. In particular, the first feature 307

mixing operates within each time step of trajectory patches 308

to capture feature-wise dependencies. This step is crucial for 309

extracting localized spatial features and ensuring that the po- 310

sitioning information are effectively modeled. Further, the 311

second sequence mixing operation focuses on intra-sequence 312

(trajectory patch) interactions by capturing temporal depen- 313

dencies across the sequence. This step ensures that the model 314

considers the sequential nature of the data, which is essential 315

for trajectory prediction tasks. 316

After the mixing operations, TEMPT is capable of effec- 317

tively extracting both localized and global features, ensur- 318

ing robust performance on diverse trajectory datasets. As 319

we are adopting the straightforward MLP structure, the first 320

challenge in Section 1, i.e., computationally intensive pre- 321

diction, can be resolved. Nonetheless, the second one, i.e., 322

variable trajectory length, remains open. Inspecting into the 323

tensor shape Ni ×Pi ×F after patching, one may figure that 324

Ni is indeed variable subject to the length of input trajecto- 325

ries. A third MLP mixing operation, as how previous MLP- 326

Mixers did, obviously cannot address this problem. There- 327

fore, TEMPT adopts a simple-yet-highly-effective trainable 328

weighted aggregation mechanism to fuse the output of mix- 329

ing operations as follows: 330

Hi = Wi,1:Ni
Mi, (7)

where Wi is a learnable weighting vector regulating the in- 331

fluence of each trajectory patch on the representation. The 332

length of this vector is set to a larger number than maxNi. 333

This design, though seems rough at first sight, indeed accords 334

with its rationale. With a trained TEMPT, values in Wi is 335

a straightforward indication of the importance of trajectory 336

patches for subsequent prediction. During back-propagation, 337

Wi values correspond to the near past are better trained than 338

distant ones, which also reflects their intuitive importance. 339

4.4 Prediction Projection Heads 340

With the extracted latent representation of input trajectories, 341

the prediction task is accomplished by a decoder-like predic- 342

tion projection head. Following the lightweight implementa- 343

tion principle, TEMPT reuses the mixing structure introduced 344

in Section 4.3 and outputs the prediction locations in one go. 345

Specifically, the aforementioned weighting aggregation gen- 346

erates one trajectory representation in each TEMPT Layer. 347

The representation is subsequently fed into a standalone mix- 348

ing operation, whose output dimension is H×F . This output 349

Ci,t+1:t+H is considered as the prediction of the correspond- 350

ing decomposed Ci c.f. (2). The final prediction is the naı̈ve 351

aggregation
∑

i Ci,t+1:t+H . 352

One may note that in TEMPT, the prediction is conducted 353

in batch instead of the more common auto-regressive manner. 354

The design is primarily for reducing the computational foot- 355

print for long-horizon forecast scenarios. Indeed, TEMPT 356



can be naturally adapt to auto-regressive prediction by taking357

the output values as the next-step input.358

4.5 Decomposition and Training359

Intuitively, TEMPT can be trained by comparing the pre-360

diction and ground truth values in a self-supervised manner.361

However, we figure that incorporating an additional residual362

loss [Zhong et al., 2024] alongside the prediction loss is in-363

strumental in ensuring the preservation and utilization of the364

principal components of the trajectory data. This residual loss365

serves as a regularization and guides the model to focus on366

the most informative and meaningful aspects of the data, re-367

inforcing the learning of robust representations. This dual-368

objective training framework encourages a deeper alignment369

between the learned representations and the underlying dy-370

namics of the trajectory data, making the predictive process371

more effective and reliable.372

To achieve this objective, TEMPT employs another mixing373

operation after the representation learning with its output de-374

signed to decompose the remaining principal component of375

the trajectory, i.e., Ci. By (6), TEMPT removes the extracted376

principal component from the input trajectory data, and re-377

cursively calculates the final residual R = {rij} from any378

input trajectory X . According to [Zhong et al., 2024], train-379

ing against the residual loss aims at developing a zero-mean,380

non-autocorrelated noise signal from the raw data. Corre-381

spondingly, the loss is defined as382

Lres =

∑
rij

MF
+

∑
(ReLU(|aij − α/

√
M |))2

(M − 1)F
, (8)

aij =

∑L
k=j+1(rik − r̄i)(ri,k−j − r̄i)∑L

k=1(rik − r̄i)2
, (9)

where (9) defines the autocorrelation of R and α is the max-383

imum tolerance of autocorrelation coefficient. The first term384

in (8) minimizes the mean of R, while the second minimizes385

the autocorrelation.386

The training pipeline of TEMPT involves feeding input se-387

quences into the model, where each TEMPT Layers generates388

both predictive outputs and decomposed trajectory compo-389

nents. The former is aggregated and tested against the ground390

truth future trajectory points, while the latter is reduced from391

the original input and compute the residual. The training ob-392

jective is formulated as393

L = Lpred + λLres, (10)

where Lpred is the L2 prediction loss, Lres is the residual loss,394

and λ is a loss balancing parameter.395

5 Experiment396

In this section, we present a series of comprehensive experi-397

ments on two real-world datasets to show the efficacy of398

TEMPT on trajectory prediction. We first introduce the ex-399

perimental configurations, including the datasets, implemen-400

tation details of TEMPT, and state-of-the-art base- line meth-401

ods. Subsequently, we conduct an extensive comparative402

study to assess TEMPT’s predictive performance. Further,403

we analyze the impact of key components on TEMPT’s per-404

formance. Finally, we study the structural design of TEMPT.405

5.1 Experiment Settings 406

To evaluate the effectiveness of TEMPT, we conducted ex- 407

periments on two real-world taxi trajectory datasets collected 408

from Chengdu and Xi’an2. The sampling rate for these 409

datasets are 3 seconds. Based on the trajectory data, we for- 410

malize three trajectory prediction scenarios: Short for pre- 411

dicting the trajectory in the next 15, 30, and 60 seconds 412

({5, 10, 20}-step prediction) with past 30 observations; Long 413

for predicting the trajectory in the next 30, 60, 120, and 600 414

seconds ({10, 20, 40, 100}-step prediction) with past 400 ob- 415

servations. A third All scenario does not limit the number of 416

past observations, i.e., variable-length input trajectory, and 417

predicts for 15, 30, 60, 120 seconds into the future. For 418

all scenarios, we train TEMPT with L = 4. Patch sizes 419

Pi are {30, 10, 5, 1} for short-term prediction and otherwise 420

{40, 20, 10, 1}. 421

We compare TEMPT with the following baselines: 422

• NexuSQN (2024) [Nie et al., 2024]: An MLP-based spatial 423

and temporal mixer for general traffic forecasting. 424

• MSD-Mixer (2024) [Zhong et al., 2024]: A trajectory 425

prediction model that integrates multi-scale decomposition 426

and mixing mechanisms. 427

• MLPST (2023) [Zhang et al., 2023]: A lightweight MLP- 428

based spatiotemporal model for trajectory prediction. 429

• PatchTST (2023) [Nie et al., 2023]: A transformer-based 430

model for long-sequence time-series forecasting. 431

• DLinear (2023) [Zeng et al., 2023]: A linear model opti- 432

mized for efficiency in time-series forecasting. 433

• Naı̈ve: A baseline that assumes no change from the last 434

observed value. 435

All models are implemented and evaluated in a Python en- 436

vironment equipped with PyTorch on an NVIDIA 2080 Ti 437

GPU. The primary evaluation metrics are Root Mean Squared 438

Error (RMSE) between prediction results and real trajec- 439

tories, together with Mean Absolute Error (MAE) measur- 440

ing the geographical distance error between prediction and 441

ground truth trajectory. 442

5.2 Overall Performance 443

Table 1 presents the overall performance of TEMPT and 444

the baseline models across short-term and long-term predic- 445

tion tasks. For short-term predictions, TEMPT consistently 446

achieves the lowest MSE and MAE values across all horizons, 447

indicating its superior accuracy in capturing fine-grained tem- 448

poral dependencies. On average, TEMPT reduced the MAE 449

by a consistent remarkable 25.14% over any second-best per- 450

forming baselines. For instance, in the Chengdu dataset, 451

TEMPT attains an MAE of 2.34 for 15-second prediction, 452

significantly outperforming the second-best model, MSD- 453

Mixer, by a 59.72% error reduction. Similarly, in the Xi’an 454

dataset, TEMPT demonstrates outstanding performance with 455

an MAE of 8.33 for 30-second prediction, a 43.0% error 456

reduction over the second-best MLPST. The results suggest 457

that TEMPT’s multi-scale patching and weighted aggregation 458

mechanisms effectively capture the complex temporal depen- 459

dencies in the trajectory data, leading to superior prediction 460

accuracy. 461

2https://outreach.didichuxing.com/



Table 1: Trajectory prediction results. The best results are in bold and the second bests are underlined.

Models
TEMPT NexuSQN MSD-Mixer MLPST PatchTST DLinear Naı̈ve(Ours) (2024) (2024) (2023) (2023) (2023)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

C
he

ng
du

Short
15s 2.67 2.34 11.58 9.77 6.68 5.81 12.74 10.08 15.46 11.46 23.86 16.02 70.69 47.26
30s 5.80 5.26 21.92 16.39 8.86 7.93 17.31 14.17 14.45 12.11 26.86 19.65 217.49 145.91
60s 15.74 12.84 39.34 30.17 19.31 15.60 37.40 29.13 31.63 25.42 43.19 32.83 330.06 248.91

Long
30s 14.85 13.37 24.13 18.36 20.24 17.05 23.39 18.28 22.09 18.16 16.78 15.10 64.64 44.93
60s 31.62 27.59 50.88 36.92 45.53 35.60 41.68 33.30 63.64 45.81 68.77 48.27 136.61 93.57

120s 68.09 54.39 96.82 76.46 123.09 89.09 79.61 63.07 110.48 84.41 134.59 95.30 288.22 193.59
300s 255.87 198.45 333.03 239.80 521.56 364.31 287.59 210.81 441.57 314.63 566.50 384.20 2046.59 1370.74

All
15s 2.73 2.40 11.68 9.93 6.73 6.07 12.99 10.25 16.06 12.15 24.79 17.02 68.74 45.11
30s 5.89 5.34 22.24 16.68 9.03 8.16 18.04 14.95 15.36 13.20 27.59 20.43 226.30 158.12
60s 15.88 13.06 40.87 32.01 19.93 16.00 38.26 30.03 32.59 26.77 44.40 33.68 345.57 255.34

120s 65.40 50.77 93.35 74.12 115.83 83.49 73.96 60.21 105.20 82.29 130.91 92.62 283.49 189.96

X
i’

an

Short
15s 3.13 2.53 8.00 6.01 7.82 5.88 4.31 3.39 7.15 5.61 8.80 6.59 47.64 33.28
30s 9.60 8.33 24.14 17.25 28.52 19.35 17.70 14.62 20.65 16.80 35.31 23.87 103.41 69.53
60s 24.48 21.67 33.54 27.31 43.18 33.18 49.89 38.08 62.14 44.26 71.75 50.61 204.49 142.20

Long
30s 18.30 12.55 33.57 22.43 19.27 14.20 21.69 15.89 24.43 18.46 26.87 19.07 106.55 62.04
60s 25.28 20.05 41.47 31.97 34.81 26.67 36.21 29.70 35.94 28.73 36.43 29.89 187.57 115.29

120s 62.19 50.44 101.87 68.01 81.83 63.82 72.52 57.40 78.98 62.33 91.16 65.46 327.66 210.07
300s 225.09 193.30 367.49 280.26 350.29 278.60 415.77 295.41 292.76 250.35 400.15 290.72 698.94 482.44

All
15s 3.15 2.60 8.43 6.35 8.11 6.34 4.60 3.62 7.47 5.92 9.36 6.94 45.43 30.81
30s 9.68 8.65 24.38 17.89 28.80 20.14 18.11 15.04 21.19 17.72 36.60 24.77 105.22 71.80
60s 24.56 21.79 33.83 27.51 43.54 33.49 50.31 38.99 63.31 45.09 72.87 51.17 210.61 147.72

120s 62.54 50.71 102.00 68.87 82.25 64.29 73.36 58.31 79.70 63.43 92.37 66.18 306.83 196.98

Avg. Error ↓ (%) - - 49.10 32.21 40.04 23.45 40.00 23.49 47.93 33.74 57.37 42.06 87.02 80.58

In long-term predictions, TEMPT also excels, particularly462

for prediction horizons up to 120 seconds. For instance, in463

the Chengdu dataset, TEMPT achieves an MAE of 54.39464

for 2-minute prediction, while the next-best model, MLPST,465

records an MAE of 33.30. In the Xi’an dataset, TEMPT466

achieves an MAE of 50.44 for the same horizon, outperform-467

ing PatchTST and MLPST. However, for extremely long hori-468

zons (6 minutes), while TEMPT still performs competitively,469

the gap with transformer-based baselines narrows slightly,470

suggesting potential room for optimization in capturing ultra-471

long trajectory dependencies.472

The superiority of TEMPT is further validated by the473

All scenario, where it consistently outperforms all baselines474

across all prediction horizons with larger improvements over475

the previous fix-length scenarios. The results demonstrate the476

effectiveness of the proposed weighted aggregation mecha-477

nism on learning and condensing trajectory representations.478

TEMPT’s robustness and generalization capabilities are also479

thereby validated, showcasing its ability to handle variable-480

length input trajectories and predict accurately into the future.481

Layer 1, Patch size=40

Layer 2, Patch size=20

Layer 3, Patch size=10

Layer 4, Patch size=1

1.0

0.0
ImmediateDistant

Trained Patch Weights
Figure 3: Trained patch weight values in weighted aggregation.

To further demonstrate the lightweight nature of TEMPT,482

we compare its training and prediction time with the base- 483

lines. The average training time for one epoch and av- 484

erage prediction time for one trajectory is summarized in 485

Table 2, showcasing TEMPT’s significantly lower compu- 486

tation footprint compared to all baselines, approximately 487

1.5 times faster than the performing baselines MSD-Mixer 488

and MLPST. The efficiency advantage is attributed to the 489

model’s MLP-based compact architecture design and the use 490

of adaptive patching and weighted aggregation mechanisms, 491

which enable effective information aggregation and process- 492

ing across multiple scales. Figure 3 illustrates the learnt 493

values of the weighted aggregation mechanism in TEMPT. 494

The result accords with the intuition that more immediate 495

patches are assigned higher weights, i.e., more important, 496

while patches further in the past are given lower weights. 497

The visualization demonstrates the model’s ability to adap- 498

tively assign importance to different trajectory patches based 499

on their relevance to the prediction task. 500

5.3 Ablation Study 501

While the MLP-based architecture of TEMPT contribute to 502

the training and inference efficiency, we figure that the ef- 503

fectiveness of TEMPT are rooted in the proposed adaptive 504

patching and weighted aggregation. To validate the effect of 505

the proposed modules, we implement the following variants 506

of TEMPT: 507

• TEMPT-U: TEMPT without multi-scale patching. We use 508

the same patch size for all layers and the patch size is set to 509

10, i.e., 30 seconds. 510

• TEMPT-S: TEMPT with static pooling. We replace learn- 511

able weighted pooling with static pooling which treats all 512

patches with the same importance. The weights are frozen 513



Table 2: Time complexity study results. Training time is for one epoch, prediction time is for one trajectory.

Models
TEMPT NexuSQN MSD-Mixer MLPST PatchTST DLinear

Train Pred. Train Pred. Train Pred. Train Pred. Train Pred. Train Pred.

Pr
ed

.L
en

. 15s 171s 0.06s 273s 0.10s 250s 0.09s 261s 0.09s 425s 0.68s 378s 0.26s
30s 177s 0.08s 281s 0.11s 257s 0.11s 273s 0.15s 451s 0.80s 380s 0.26s
60s 180s 0.09s 286s 0.13s 261s 0.12s 279s 0.16s 465s 0.93s 384s 0.30s

120s 190s 0.11s 289s 0.17s 265s 0.18s 289s 0.20s 490s 1.03s 397s 0.34s
300s 205s 0.18s 311s 0.28s 288s 0.27s 304s 0.31s 510s 1.34s 423s 0.49s

Speed ↑ - - 1.5× 1.6× 1.4× 1.5× 1.5× 1.7× 2.5× 9.6× 2.1× 3.3×

Table 3: Ablation study results on Xi’an long-term 30-second pre-
diction.

Model TEMPT TEMPT-U TEMPT-S TEMPT-I

RMSE 15.46 18.95 18.51 16.57
MAE 12.55 13.82 13.60 12.59

during training so that the pooling process is static.514

• TEMPT-I: inverted TEMPT. We arrange the layers with515

their patch sizes in ascending order to discover the inverted516

scale of patching.517

We adopt Xi’an long-term 30-second prediction to validate518

the efficacy of the proposed modules. The results in Table 3519

show that varying patching sizes play a critical role in cap-520

turing temporal dependencies, as evidenced by the perfor-521

mance drop in TEMPT-U. We hypothesize that the multi-522

scale patching mechanism enables TEMPT to capture both523

short-term and long-term dependencies effectively, essential524

in trajectory prediction task. Further, a non-negligible per-525

formance drop is observed in TEMPT-S, indicating the im-526

portance of the learnable weighted pooling mechanism in527

capturing the relevance of different trajectory patches. This528

observation is consistent with the intuition that different tra-529

jectory patches contribute differently to the prediction task,530

and the model should adaptively assign importance to each531

patch based on its relevance. What surprised us is that the in-532

verted TEMPT, TEMPT-I, achieves competitive performance533

compared to the original TEMPT. This result suggests that534

the model is capable of learning the importance of different535

patches regardless of their order, indicating the robustness536

and flexibility of the proposed weighted aggregation mech-537

anism.538

5.4 TEMPT Structure Analysis539

TEMPT incorporates L TEMPT Layers for multi-level tra-540

jectory decomposition, where each layer employs a different541

patch size Pi. To validate their combined impact on TEMPT’s542

performance, we define several variants with varying num-543

bers of layers and patch sizes as follows:544

• Original TEMPT: four TEMPT Layers and Pi = {40, 20,545

10, 1}.546

• T-3A: three TEMPT Layers and Pi = {20, 10, 1}.547

• T-3B: three TEMPT Layers and Pi = {100, 40, 20}.548

• T-4A: four TEMPT Layers and Pi = {100, 40, 20, 10}.549

• T-4B: four TEMPT Layers and Pi = {200, 100, 400, 20}.550

• T-5A: five TEMPT Layers and Pi = {100, 40, 20, 10, 1}.551

Similar to the previous ablation study, we also adopt Xi’an552

long-term 30-second prediction for comparison. The simula- 553

tion results are summarized in Table 4. 554

Table 4: Hyper-parameter study results on Xi’an long-term 30-
second prediction.

Model TEMPT T-3A T-3B T-4A T-4B T-5A

RMSE 15.46 18.43 17.61 16.38 16.74 15.84
MAE 12.55 13.78 13.41 12.73 12.96 12.59

From the table, we observe that the original TEMPT con- 555

figuration achieves the best performance, indicating that the 556

four-layer configuration with patch sizes of 40, 20, 10, and 557

1 strikes the best balance between accuracy and computa- 558

tional efficiency. This result aligns with the architecture de- 559

sign discussed in Section 4, where the multi-scale patching 560

mechanism enables TEMPT to capture both short-term and 561

long-term dependencies effectively. Further, the results also 562

indicate that while achieves slightly worse performance, the 563

performance gap of TEMPT variants are relatively small, sug- 564

gesting that TEMPT is robust to variations in the number of 565

layers and patch sizes. This robustness is crucial for practi- 566

cal applications where the model needs to adapt to different 567

scenarios and data characteristics. 568

6 Conclusion 569

In this paper, we introduced TEMPT (Trajectory Mixing De- 570

composition), a novel framework designed for GPS trajectory 571

prediction with a focus on computational efficiency, flexibil- 572

ity, and predictive accuracy. TEMPT leverages a lightweight 573

MLP-based architecture that integrates adaptive patch-based 574

input representation, multi-scale mixing mechanisms, and 575

a robust decomposition strategy. TEMPT enables effective 576

handling of trajectories of varying lengths while maintain- 577

ing high prediction performance across both short-term and 578

long-term forecasting tasks using only fractions of computa- 579

tion over state of the arts. 580

Extensive experiments on real-world traffic datasets, in- 581

cluding Chengdu and Xi’an, demonstrate that TEMPT con- 582

sistently outperforms state-of-the-art models in terms of both 583

accuracy and efficiency. The model’s low footprint nature 584

with its remarkable prediction performance is particularly 585

suitable for real-time applications in resource-constrained en- 586

vironments. Ablation studies further validate the effective- 587

ness of key architectural components, namely, adaptive patch- 588

ing and weighted pooling. Future work will focus on extend- 589

ing TEMPT to ultra-long-term predictions and exploring its 590

adaptability to other spatiotemporal prediction domains. 591
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