
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

FACT: High-Fidelity and Controllable Trajectory Data Generation
Anonymous Author(s)

Abstract
Trajectory data is replete with spatial-temporal information that
reflects the traffic conditions within a city, serving as a rich resource
for traffic-related tasks. The generation of trajectory data is essen-
tial for accurately modeling real-world traffic scenarios. Existing
methods for spatial-temporal data generation encounter several
challenges, including low fidelity and time-intensive processes. In
this paper, we propose a high-Fidelity And Controllable Trajectory
generation method (FACT) that employs the diffusion model to
achieve high-quality data generation. We design a trajectory denois-
ing transformer architecture, named TDFormer, for high-fidelity
trajectory generation. Besides, we define the condition variable to
effectively guide the controllable trajectory generation. Further-
more, we propose the adaptive resampling strategy to optimize the
efficiency of FACT for practical applications. The resampled tra-
jectory sequence and well-defined condition variables are merged
into TDFormer to synthesize geographic trajectories from random
noise. Empirical experiments that have been conducted on three
distinct real-world datasets provide compelling evidence that FACT
is capable of effectively generating high-fidelity and controllable
trajectory data by given conditions. Moreover, the generated data
can be seamlessly integrated into traffic-related downstream tasks.

Keywords
Diffusion transformer, trajectory generation, controllable genera-
tion.

ACM Reference Format:
Anonymous Author(s). 2018. FACT: High-Fidelity and Controllable Tra-
jectory Data Generation. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
With the rapid proliferation of GPS-embedded devices and advanced
data acquisition technologies, a substantial volume of trajectory
data has been generated [39]. Trajectory data, comprising a se-
quence of spatial points that delineate vehicle movement over
time, is extensively utilized in a diverse array of traffic-related
applications owing to its rich spatiotemporal insights. These appli-
cations encompass travel time prediction [51], origin-destination
analysis [32], and various location-based services [4], playing a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

crucial role in facilitating the advancement of Intelligent Trans-
portation Systems (ITS). However, the acquisition of such exten-
sive datasets presents considerable challenges, including privacy
infringements, elevated procurement expenses, and stringent reg-
ulatory constraints on data dissemination [16, 17]. Furthermore,
trajectory data exhibits significant inter-individual variability and
sensitivity to spatiotemporal contexts, thereby impeding the accu-
rate capture of vehicle mobility patterns [5, 18, 22]. This accentuates
the imperative for an effective trajectory generation methodology
that not only encapsulates the complicated data distributions and
salient features but also enables controllable trajectory synthesis
to underpin subsequent analytical endeavors.

Figure 1:High-fidelity and controllable trajectory generation.

Several data generation methodologies leveraging deep learn-
ing techniques have been proposed to synthesize data that closely
approximates the original data distribution and feature space [1,
23, 42, 44, 53]. By preserving the fidelity of the original data dis-
tribution, generative methods furnish a viable solution for data
sharing, providing synthetic data as a substitute for raw data and
mitigating privacy apprehensions[2]. Moreover, in comparison to
other data modalities such as text and images, trajectory datasets
are inherently sparse and often challenging to procure at a large
scale [7]. By generating synthetic trajectories, generative models
can significantly augment trajectory databases, thereby enhanc-
ing their utility in applications including mobility forecasting and
spatiotemporal analysis [49].

In the pursuit of generating trajectories that capture the complex-
ities inherent in real-world scenarios, researchers have explored a
spectrum of approaches. Initial endeavors, grounded in rule-based
or statistical paradigms, offered interpretability yet encountered
limitations in capturing the intricate spatiotemporal dynamics of
human mobility [33]. Subsequently, deep learning methodologies,
such as Generative Adversarial Networks (GANs) [29], Variational
Autoencoders (VAEs) [45], and Diffusion Models [47, 52, 53], have

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

been increasingly adopted to model complex trajectory distribu-
tions. Despite the advancements afforded by these techniques, cur-
rent trajectory modeling approaches commonly prioritize the over-
all trends in vehicle transitions. This is often achieved through
the simplification of trajectories into coarse-grained representa-
tions, such as grid cells [12, 41, 48], or by transforming them into
image-based formats [37, 40, 46]. Consequently, this emphasis on
simplification can lead to limitations in the granularity of the gen-
erated trajectories [24]. Furthermore, current methodologies, in-
cluding Diff-RNTraj [42] and DiffTraj [52], exhibit limitations in
generating specific trajectory patterns, particularly those charac-
terized by irregularity or sparsity in spatial distribution. Moreover,
these approaches often fall short of meeting the requirements of
application-driven scenarios, such as the demand for fine-grained
spatiotemporal control or the accommodation of heterogeneous,
user-specified conditions during the trajectory synthesis process.
Challenges persist in generating fine-grained, condition-specific
trajectory data, and can be summarized as follows:
• Fidelity: Generating high-fidelity trajectories is difficult due to

complex spatiotemporal features and the necessity of incorporat-
ing road network topology. Current methods typically require
pre-training for topology encoding and output rectification.

• Controllability: Existing models primarily focus on group mo-
bility simulationwithout precise individual control or task/region-
specific guidance. The absence of explicit trajectory descriptors
further complicates controllable generation for applications.

• Efficiency: General diffusionmodels, while offering high-quality
generation, suffer from long training and inference times, posing
efficiency concerns. Balancing model performance and computa-
tional efficiency remains a key challenge.
To address these aforementioned limitations, we introduce FACT,

a Fidelity-And-Controllable generative model that leverages diffu-
sion models for trajectory data generation, as depicted in Figure
1. FACT incorporates a Trajectory-Denoising transFormer archi-
tecture, termed TDFormer, specifically designed for generating
high-fidelity trajectory data. Furthermore, condition variables are
meticulously designed to encompass multiple features to accurately
represent trajectory characteristics, effectively guiding the training
procedure and facilitating the generation of controllable outputs
while minimizing redundant features to enhance efficiency. To
mitigate the computational overhead associated with transformer
architectures during training and inference, we propose an adaptive
resampling strategy. This strategy not only accelerates inference
speed but also optimizes overall model efficiency by reducing model
complexity through adaptive trajectory data resampling. The resam-
pled trajectory data, in conjunction with condition variables, is sub-
sequently integrated into the TDFormer to synthesize geographic
trajectories from random Gaussian noise. Extensive experimental
evaluations conducted on three real-world datasets corroborate the
efficacy of FACT. The results demonstrate FACT’s capability to gen-
erate high-fidelity trajectories suitable for traffic-related analyses
while ensuring controllable outputs for targeted applications. The
contributions of this paper are summarized as follows:
• This paper introduces the FACT framework, a novel approach

predicated on the proposed TDFormer architecture, for generat-
ing high-fidelity trajectories. Synthesized trajectories from FACT

preserve the underlying data distribution of the original dataset,
thereby accurately representing real-world traffic dynamics and
facilitating a range of downstream tasks.

• We present a condition variable design specifically tailored for
trajectory data, which enables controllable trajectory genera-
tion through an efficient representation of trajectory characteris-
tics. Additionally, we introduce an adaptive resampling strategy
designed to guide both the training and generation processes,
thereby enhancing model efficiency and operational flexibility.

• We empirically validate FACT utilizing three real-world datasets.
The results demonstrate superior performance in generating
high-fidelity trajectory data relative to baseline methodologies.
Furthermore, evaluations on downstream tasks highlight the
efficacy of the generated trajectories.
The remainder of this paper is structured as follows: Section 2

reviews related work on generative models, conditional generation,
andmodel efficiency. Sections 3 and 4 present the problem definition
and the proposed methodology, respectively. Section 5 details the
experimental setup and compares the performance of FACT with
state-of-the-art models. Finally, Section 6 concludes the paper and
outlines future research directions.

2 Related Work
In this section, we present a brief review of prior research per-
taining to generative models, conditional generation techniques,
and considerations of model efficiency. Our discussion emphasizes
diffusion models, owing to their outstanding performance when
compared to other contemporary generative modeling paradigms.

2.1 Diffusion Model for Trajectory Generation
As a state-of-the-art data generation technique, the diffusion model
showcases its robust capabilities in generating data [14, 34, 36].
The diffusion model operates through two primary processes: the
forward process and the reverse process. In the forward process,
noise is gradually added to the original data, while the reverse
process learns to reconstruct the original data from the noisy ver-
sion. Several advancements have been made to enhance both the
speed and quality of generation. The Denoising Diffusion Implicit
Model (DDIM) [35] accelerates sampling through a non-Markovian
diffusion process. Learning the variances in the reverse diffusion
process further accelerates the forward process with minimal loss in
sample quality [26]. Additionally, numerous studies have explored
spatial-temporal generation using the diffusion model. For example,
DiffTraj [52] employs the diffusion model with a U-Net architecture
to generate trajectory data. ControlTraj [53] extends this approach
by incorporating topology constraints to produce higher-quality
data. Diff-RNTraj [42] focuses on road segments and introduces a
pretraining module to improve their representation. Moreover, the
transformer architecture has also demonstrated its superior ability
in data generation [27].

2.2 Conditional Generation
Conditional data generation has become a crucial area in machine
learning, especially through the use of Conditional Generative
Adversarial Networks (CGAN) [25] and Conditional Variational
Autoencoders (CVAE) [21]. Both CGAN and CVAE enhance the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

FACT: High-Fidelity and Controllable Trajectory Data Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

capabilities of original models by conditioning them on additional
information, such as class labels or attributes, enabling the genera-
tion of data that satisfies specific conditions. A key advantage of
conditional generation is its ability to produce high-quality syn-
thetic data, which can enrich limited datasets. For example, Das et
al. propose a hybrid model that combines a conditional generative
flow with a classifier to generate synthetic data, helping address
the challenges of limited and scarce labeled data during the pan-
demic [6]. Furthermore, diffusion models can provide guidance
for the given conditions [3]. Condition variables are embedded
and concatenated with hidden variables during training [52], or
they can interact with the model training through mechanisms like
cross-attention [27, 30]. This allows the model to be directed by the
condition variables, enabling the desired generation.

2.3 Model Efficiency
Although the diffusion model outperforms other methods with
higher generation quality, there remains a challenge in balanc-
ing computational cost and model performance [38]. Due to the
Markov-based forward and reverse processes, both the training and
generation steps must be carried out sequentially. Furthermore, to
ensure effective training, the number of steps should be sufficiently
large to allow the noised data to closely follow a Gaussian distribu-
tion. As a result, the computational cost increases with the number
of steps. Additionally, specific architectures, such as transformers,
demand more computational resources and have higher inference
time overhead due to their global attention mechanism [28, 50].
Therefore, optimizations are necessary for both training and infer-
ence to make the model more efficient in real-world applications.

3 Preliminaries
In this section, we introduce key preliminaries to define the problem
and establish the foundational concepts. Additionally, we provide
an overview of the diffusion probabilistic model and the diffusion
transformer.

3.1 Problem Definition
Definition 1 (GPS Trajectory). Formally, a GPS trajectory

P is defined as a temporally ordered sequence of GPS points, P =

{𝑝1, . . . , 𝑝𝑚}. Each point 𝑝𝑖 ∈ P is represented as a triplet 𝑝𝑖 =

⟨lon𝑖 , lat𝑖 , 𝑡𝑖 ⟩, where lon𝑖 and lat𝑖 denote the longitude and latitude,
respectively, at time step 𝑡𝑖 . The triplet 𝑝𝑖 thus encapsulates the spatial
coordinates and the timestamp for the 𝑖-th point in the trajectory.

Definition 2 (Traffic road network). The traffic road net-
work, representing the topological structure of a city, is formally
defined as a directed graph G = {V, E}. In this graph, V represents
the set of vertices, corresponding to intersections or junctions within
the road network, and E denotes the set of directed edges, representing
the road segments connecting these intersections. Road topology infor-
mation is publicly accessible from resources such as OpenStreetMap1.

Definition 3 (Trajectory condition variable). Let c = {𝑓1, 𝑓2, . . . }
denote the condition variable associated with a given trajectory, where
each element 𝑓𝑖 represents the 𝑖-th trajectory feature. This vector encap-
sulates a set of salient features characterizing the trajectory, designed
1http://www.openstreetmap.org/

to be readily discernible by the generative model. Furthermore, the
condition variable is constructed to efficiently represent the condi-
tions influencing the trajectory, ensuring feature distinctiveness and
minimizing redundancy.

Problem 1 (Trajectory Generation). Given a dataset of origi-
nal GPS trajectoriesT = {P1,P2, ...,P𝑛}, where eachP𝑖 = {𝑝𝑖1, . . . , 𝑝

𝑖
𝑚}

constitutes an individual trajectory, the objective is to train a genera-
tive model G. This model is tasked with generating a set of synthetic
trajectories T𝑘 = G(C𝑘), where C𝑘 represents the condition set for the
generated trajectories and 𝑘 denotes the cardinality of the generated
set. The generated trajectories are required to exhibit a data distri-
bution statistically similar to that of T , demonstrating high fidelity
with respect to the underlying road network topology G of the corre-
sponding city. Moreover, the generation process must be effectively
controlled by the provided condition set C𝑘 . Finally, the computa-
tional demands of the generation process must be tenable for practical
real-world applications.

3.2 Diffusion Probabilistic Model
The diffusion probabilistic model, frequently denoted as the diffu-
sion model, has emerged as a potent paradigm for the generation
of high-quality data, spanning modalities such as images, text, and
audio [11, 15, 19, 20, 31, 43]. This versatility and performance ef-
ficacy render diffusion models superior to alternative generative
approaches like GAN and VAE [14, 35, 36]. At its fundamental prin-
ciple, the diffusion model operates through two stages: the forward
diffusion process and the reverse denoising process. The forward
process entails the iterative and gradual addition of random noise
to the original data, whereas the reverse process involves training
a model to learn the inverse transformation, effectively reconstruct-
ing the original data from its progressively noised counterpart.
These processes can be mathematically formulated as follows:

Forward process. Given original data denoted as 𝑋0, the for-
ward diffusion process is characterized by the progressive addition
of Gaussian noise over 𝑇 discrete steps. This process is formally
structured as a Markov chain, defined as:

𝑞(𝑋1:𝑇 |𝑋0) =
𝑇∏
𝑡=1

𝑞(𝑋𝑡 |𝑋𝑡−1), (1)

𝑞(𝑋𝑡 |𝑋𝑡−1) = N(𝑋𝑡 ;
√︁

1 − 𝛽𝑡𝑋𝑡−1, 𝛽𝑡 I), (2)

where I represents the identity matrix and 𝛽𝑡 ∈ (0, 1)𝑇𝑡=1 is a se-
quence of variances. To enable differentiability and facilitate gradient-
based optimization, the reparameterization trick is employed [14].
This technique allows for the expression of 𝑋𝑡 in terms of 𝑋0 and a
noise term, specifically𝑋𝑡 =

√
𝛼𝑡𝑥0+

√
1 − 𝛼𝑡𝜖𝑡 , where 𝜖𝑡 ∼ N(0, I)

and 𝛼𝑡 =
∏𝑡

𝑖=1 (1 − 𝛽𝑖).
Reverse process. In the reverse process, the generative model

is trained to approximate the reverse Markov chain and reconstruct
the original data distribution from a state of pure noise. The initial
state of the reverse process is given by sampling from a standard
Gaussian distribution, 𝑋𝑡 ∼ N(0, I). Analogous to the forward

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Network structure of FACT. (a) FACT Overview. (b) TDFormer Block.

process, the reverse process is also formulated as a Markov chain:

𝑝𝜃 (𝑋0:𝑇) = 𝑝 (𝑋𝑇)
𝑇∏
𝑡=1

𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡), (3)

𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡) = N(𝑋𝑡−1; 𝜇𝜃 (𝑋𝑡 , 𝑡), 𝜎𝜃 (𝑋𝑡 , 𝑡)2I), (4)

where 𝜇𝜃 (𝑋𝑡 , 𝑡) and 𝜎𝜃 (𝑋𝑡 , 𝑡) are the mean and variance functions,
respectively, parameterized by 𝜃 . Following the reparameterization
technique [14], for any 𝛽𝑡 =

1−𝛼𝑡−1
1−𝛼𝑡 𝛽𝑡 (𝑡 > 1) and 𝛽1 = 𝛽1, the

parameters 𝜇𝜃 and 𝜎𝜃 are specified as:

𝜇𝜃 (𝑋𝑡 , 𝑡) =
1

√
𝛼𝑡

(𝑋𝑡 −
𝛽𝑡√

1 − 𝛼𝑡
𝜖𝜃 (𝑋𝑡 , 𝑡)), (5)

𝜎𝜃 (𝑋𝑡 , 𝑡) =
√︃
𝛽𝑡 . (6)

In practice, the training process of the diffusion model can be
summarized as learning the Gaussian noise 𝜖𝜃 and minimizing the
mean squared error (MSE) between the predicted noise 𝜖𝜃 (𝑋𝑡) and
the true noise 𝜖𝑡 , which is sampled from a Gaussian distribution.
This objective can be expressed as follows:

min
𝜃

L(𝜃) = min
𝜃

E𝑡,𝑋0∼𝑞 ∥𝝐𝑡 − 𝝐𝜃 (𝑋𝑡 , 𝑡)∥2
2 , (7)

where 𝝐𝑡 is the true noise for time step 𝑡 .

3.3 Diffusion Transformer
The Diffusion Transformer (DiT) [27] integrates diffusion models
with Vision Transformers (ViT) [9] for high-fidelity generation,
particularly in image synthesis. It processes data as embedded to-
kens and incorporates temporal conditioning through trainable
timestep embeddings, effectively handling temporal dependencies.
Following the standard diffusion framework, DiT applies forward
noise addition and reverse denoising via transformers. Utilizing a
frozen pre-trained encoder 𝐸 to map inputs into a latent space, DiT
trains the diffusion process on 𝑧 = 𝐸 (𝑋), subsequently generating
data by sampling 𝑧′, which is decoded by a pre-trained decoder 𝐷
to obtain 𝑋 ′ = 𝐷 (𝑧′). DiT achieves state-of-the-art performance in
high-resolution image generation, setting a benchmark for complex
generative tasks.

4 High-Fidelity and Controllable Trajectory
Data Generation Framework

In this section, we introduce the proposed model FACT for gen-
erating high-fidelity and controllable trajectories. We propose an
efficient framework for traffic trajectory generation. The following
details outline the design of FACT.

4.1 FACT Overview
The FACT framework, as illustrated in Figure 2, is designed to
generate high-fidelity, controllable trajectories by systematically
transforming raw inputs through a structured pipeline. The pro-
cess begins with map matching, which ensures that trajectories
are accurately aligned with the road network, reducing noise and
inconsistencies in the raw data. Next, condition generation extracts
key constraints, such as spatial regions, temporal constraints, or
traffic conditions, to guide the synthesis process, enabling precise
control over the generated trajectories. To further enhance consis-
tency, adaptive resampling standardizes trajectory representations,
ensuring uniform input sequences that improve model stability
and learning efficiency. These refined inputs are then encoded to
capture critical spatial-temporal features before being passed to
the TDFormer block, which effectively models complex dependen-
cies across time and space. By iteratively applying denoising and
refinement, FACT ensures that the generated trajectories not only
replicate real-world movement patterns but also strictly adhere to
the given conditions, making them highly reliable for downstream
applications.

4.2 TDFormer Block
As outlined in Section 3, FACT is designed as a denoising framework,
aiming to develop a neural network architecture that precisely esti-
mates and removes the noise component 𝜖𝜃 (𝑋𝑡 , 𝑡) at each diffusion
timestep 𝑡 . To achieve this objective, we introduce the TDFormer
block, a novel architectural element that integrates adaptive Trajec-
tory Layer Normalization (adaTLN) with Multi-Head Self-Attention
(MHSA) mechanisms. This integration facilitates precise model-
ing of trajectory-specific conditions and inherent spatiotemporal
characteristics. The adaTLN mechanism is specifically engineered
to incorporate conditional guidance by dynamically modulating

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FACT: High-Fidelity and Controllable Trajectory Data Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

normalization parameters according to the trajectory context. Con-
currently, MHSA serves to capture intra-sample data correlations
within trajectory sequences.

In implementation, the adaTLN mechanism is realized through
a scale and shift module. This module employs learnable scale (𝜸)
and shift (𝜷) parameters, which are conditioned on the diffusion
timestep 𝑡 and the condition variable 𝑐 . Furthermore, we incorporate
dimension-wise scaling parameters, denoted as 𝜶 [27], immediately
prior to the residual connections within the TDFormer block. These
parameters modulate the output signal of each module, allowing for
dynamic adjustment of their contribution to the aggregated output.
Moreover, zero-initialization of the final batch normalization scale
factor𝜸 in each TDFormer block is employed to expedite large-scale
training procedures, particularly in supervised learning scenarios
[13]. The computational flow of these parameter interactions is
formally described by the equations below:

𝜶1/2,𝜸1/2, 𝜷1/2 = MLP(Emb(𝒄) + Emb(𝑡)), (8)

𝒉𝑖+1 =𝜶1 · MHSA(adaTLN-Zero(𝑯 𝑖)) + 𝑯 𝑖 , (9)

𝑯 𝑖+1 =𝜶2 · FFN(adaTLN-Zero(𝒉𝑖+1)) + 𝒉𝑖+1, (10)

where 𝜶1/2 is dimension-wise scale factor, 𝜸1/2 and 𝜷1/2 are scale
and shift factors respectively. MLP and Emb are multi-layer percep-
tron and embedding layer respectively. FFN denotes Feed Forwad
Network. As illustrated in Figure 2, the outcome of the TDFormer
block is computed as 𝑯 𝑖+1 = TDFormer(𝑯 𝑖), where 𝑯 𝑖 represents
the hidden states from the previous step, and 𝑯 𝑖+1 denotes the
updated hidden states after applying the TDFormer. This iterative
processing mechanism allows the model to progressively refine
and enhance trajectory predictions at each successive layer, inher-
ently considering both spatiotemporal dependencies and externally
provided conditional guidance. The details of TDFormer block are
presented in Appendix A.

4.3 Trajectory Condition Design
Unlike images, trajectory data lacks explicit categorical labels for
conditional guidance, making most generative models inherently
unconditional. Building on previous studies [52, 53], FACT refines
condition variables by eliminating redundancy and enhancing ef-
ficiency. This streamlined approach not only improves scalability
and practicality but also achieves or exceeds the performance of
existing methods in condition-guided generation.

Within trajectory analysis, condition variables can include de-
parture time (dt), total distance (td), total time (tt), total length (tl),
average distance (ad), average speed (as), origin grid ID (oID), and
destination grid ID (dID), initially defined as:

𝒄all = {dt, td, tt, tl, ad, as, oID, dID}. (11)

From this, we derive a simplified, efficient version, retaining key
discrete spatial-temporal features and crucial trajectory guidance
features (td, tt, tl). The remaining features are either linearly deriv-
able from the selected subset or exert negligible influence on the
generation outcomes, a hypothesis that is empirically validated in
Section 5.3, resulting in:

𝒄less = {dt, td, tt, tl, oID, dID}. (12)

However, in practical trajectory data generation scenarios, the
granular details of trajectories intended for synthesis are typically
not known a priori. This inherent limitation renders trajectory
features that are contingent upon completed trajectories, such as
total distance or total length, inaccessible prior to the generation
process. We therefore further condense the condition variable

𝒄 = {dt, oID, dID}, (13)

which exclusively incorporates departure time, origin grid ID, and
destination grid ID. These features are characteristically and readily
obtainable in practical, real-world deployments. A more detailed
evaluation of the guidance efficacy of these diverse condition vari-
able formulations is subsequently provided in Section 5.3. The
details of trajectory conditions are presented in Appendix B.

Figure 3: Adaptive resampling.

4.4 Adaptive Resampling Strategy
As depicted in Figure 3, the adaptive resampling module comprises
two key components: resampling and information compensation.

4.4.1 Adaptive Resampling. Transformer complexity increaseswith
input sequence length. To mitigate this, we resample trajectories of
varying lengths to a fixed length 𝑳 using linear interpolation:

P̂′ = AR(P̂, 𝑳), (14)

where P̂′ is the resampled trajectory, P̂ is the original map-matched
trajectory, and 𝑳 is the target length.

4.4.2 Information Compensation. While adaptive resampling ef-
fectively reduces computational overhead, it inherently introduces
the potential for information loss, especially in long-distance tra-
jectories where intermediate points are omitted. To mitigate this,
we employ an Information Compensation (IC) mechanism by up-
dating positional encodings. We adjust the positional encoding to
reflect the resampled trajectory and maintain temporal accuracy.
The updated positional encoding is calculated as:

𝑃𝐸 (𝑝𝑜𝑠𝐿,2𝑖) = sin
(

𝑝𝑜𝑠𝐿

100002𝑖/𝑑model

)
= sin

(
𝐿

𝑙0
· 𝑝𝑜𝑠

100002𝑖/𝑑model

)
,

(15)

𝑃𝐸 (𝑝𝑜𝑠𝐿,2𝑖+1) = cos
(

𝑝𝑜𝑠𝐿

100002𝑖/𝑑model

)
= cos

(
𝐿

𝑙0
· 𝑝𝑜𝑠

100002𝑖/𝑑model

)
,

(16)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

where 𝑙0 is the original trajectory length, 𝑝𝑜𝑠 is the original position,
and 𝑝𝑜𝑠𝐿 = 𝑝𝑜𝑠 ∗ 𝑙0/𝐿 is the adjusted position for the fixed length
𝑳. The scaling factor 𝑙0/𝐿 ensures positional encodings accurately
represent time intervals in the resampled trajectory, preserving tem-
poral information and improving model processing of resampled
data.

4.5 Trajectory Generation
Based on TDFormer, defined condition variables, and the adaptive
resampling strategy, FACT is outlined with the following training
and generating processes:

4.5.1 Training. The goal of training is to predict the noise at a given
time step 𝑡 , condition 𝒄 , and resampled length 𝑳. The optimization
function can be represented as:

min
𝜃

L(𝜃) = min
𝜃

E𝒄,𝑡,𝑋0∼𝑞 ∥𝝐𝑡 − 𝝐𝜃 (𝑋𝑡 , 𝑡, 𝒄)∥2
2 , (17)

4.5.2 Generation. During sampling, we start with 𝑋𝑇 ∼ N(0, I),
a Gaussian noise initialization. The trajectory is then recursively
sampled via the learned reverse process:𝑋𝑡−1 ∼ 𝑝𝜃 (𝑋𝑡−1 |𝑋𝑡), mod-
eling the transition from 𝑋𝑡 to 𝑋𝑡−1. The reparameterization trick
ensures that the model can generate samples by backpropagating
through the noise addition process.

5 Experiments
In this section, we first describe the experimental settings, including
datasets, baselines, evaluation metrics, and hyperparameters. Then,
we conduct comprehensive experiments on real-world datasets
to evaluate the performance of the proposed method, FACT, and
address the following research questions:
• RQ1: Does the trajectory data generated by FACT demonstrate

superior fidelity while maintaining the data distribution com-
pared to state-of-the-art methods?

• RQ2: Can FACT be effectively controlled by the given conditions?
How does each feature in the condition variable work?

• RQ3: How does each module in FACT contribute to the overall
generation performance?

• RQ4: How does FACT perform with model scaling and dataset
scaling?

5.1 Experimental Settings
5.1.1 Datasets. We evaluate FACT against various baselines on
three real-world datasets, which consist of daily taxi trajectories
collected over a month in the cities of Chengdu, Xi’an, and Porto, en-
capsulating diverse urban mobility dynamics. A detailed summary
is available in Appendix D.1 for reference.

5.1.2 Baselines. We compare the proposed FACT with state-of-
the-art generative methods, including Conditional VAE (CVAE) [8],
Conditional GAN (CGAN) [25], and diffusion models, DiffWave
[20], DiffTraj [52], Diff-RNTraj [42] and ControlTraj [53]. The de-
tailed description are presented in Appendix D.2 for reference.

5.1.3 Evaluation Metrics. We follow the methodology from pre-
vious work [10, 53] and use three evaluation metrics to assess the
quality of generated trajectories across different models: Density

error, Length error, and Pattern score. These metrics are essen-
tial for evaluating trajectory generation performance. We randomly
generate 9,000 trajectories from each model and calculate their
metrics. Further details are presented in Appendix D.3.

5.1.4 Implement Details. In FACT, we conduct model hyperparam-
eter settings and training settings. See Appendix C for details.

5.2 Overall Performance (RQ1)
FACT surpasses all baselines across three datasets, as shown in
Table 1. In Chengdu, it reduces density and length errors by 80.65%
and 54.64%, respectively, and improves the pattern score by 22.16%.
In Porto, it lowers density and length errors by 53.06% and 35.42%,
with a 19.69% pattern score gain. These results highlight the TD-
Former block’s superiority over U-Net. While Diff-RNTraj enforces
road constraints, it struggles with increasing road segment com-
plexity. As illustrated in Figure 4, FACT performs comparably to
other baselines in dense regions of Xi’an while surpassing them
in sparse areas, ultimately achieving superior overall performance.
Full visualization is presented in Appendix D.4.

Performance variations across datasets indicate the influence of
road network complexity. In complex road networks like Chengdu,
FACT’s modeling capabilities are crucial, whereas in road networks
like Porto, its relative advantage is smaller but still notable for
capturing trajectory patterns.

FACT strikes an optimal balance between efficiency and effec-
tiveness. We compare training and inference times for Diff-RNTraj,
ControlTraj, and FACT, using a batch size of 256. Although Diff-
RNTraj has the fastest training (623s/epoch) and inference (35s/-
batch) times, its performance is inferior, reflecting the trade-off
between efficiency and effectiveness. FACT, utilizing simplified
conditions and adaptive resampling, achieves strong performance
with reasonable overhead (843s/epoch, 270s/batch), outperforming
ControlTraj (1197s/epoch, 326s/batch). FACT delivers the best per-
formance and an acceptable trade-off between time and quality,
demonstrating its overall superiority. Further details on efficiency
are in Appendix D.5.

(a) Diff-RNTraj (b) ControlTraj (c) FACT (d) Real

(e) Diff-RNTraj (f) ControlTraj (g) FACT (h) Real

Figure 4: Visualization of generated trajectory dataset in
Xi’an City. Red boxes show the sparse area. Green boxes
show the dense area.

5.3 Controllable Generation (RQ2)
Among these generative methods, we select CVAE, CGAN, Diff-
Traj, and ControlTraj, which integrate condition variables to
guide both training and generation, to assess the controllability of

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FACT: High-Fidelity and Controllable Trajectory Data Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Performance comparison of different generative models.

Dataset Metrics CVAE CGAN DiffWave DiffTraj Diff-RNTraj ControlTraj FACT

Chengdu
Density (↓) 0.0583 0.0442 0.0136 0.0051 0.0371 0.0031 0.0006
Length (↓) 0.1630 0.1566 0.0311 0.0144 0.1078 0.0097 0.0044
Pattern (↑) 0.5001 0.5219 0.7590 0.8519 0.6094 0.8547 0.8869

Xi’an
Density (↓) 0.0569 0.0516 0.0208 0.0106 0.0093 0.0070 0.0014
Length (↓) 0.0607 0.0582 0.0313 0.0152 0.0191 0.0134 0.0069
Pattern (↑) 0.6790 0.7815 0.5920 0.7678 0.7940 0.8330 0.8717

Porto
Density (↓) 0.0525 0.0435 0.0096 0.0072 0.0052 0.0049 0.0023
Length (↓) 0.0560 0.0479 0.0243 0.0215 0.0156 0.0144 0.0093
Pattern (↑) 0.5194 0.6774 0.8150 0.7940 0.8220 0.8319 0.8650

Bold shows the best performance, and underline shows the second-best. ↓: lower is better, ↑: higher is better.

Table 2: Controllable generation study.↓: lower is better, ↑:
higher is better.

Methods OD Accuracy (↑) TD error (↓) AS error (↓)

CVAE 55.30% / 55.62% 1227 m 3.480 m/s
CGAN 55.76% / 58.03% 1203 m 3.368 m/s
DiffTraj 91.59% / 91.41% 139.1 m 0.2179 m/s
ControlTraj 93.22% / 93.62% 86.10 m 0.1590 m/s
FACT 94.24% / 94.69% 82.60m 0.1384m/s

the generated results. For evaluation, we use grid accuracy to assess
whether the generated trajectory points are correctly distributed
within the target grids for the origin grid and destination grid. To
measure total distance and average speed, we apply Mean Absolute
Error (MAE). The evaluation metrics are defined as follows: OD
(Origin grid and Destination grid) Accuracy, TD (Total Distance)
error, and AS (Average Speed) error.

The results in Table 2 further validate the superior controllability
of FACT in traffic trajectory generation. FACT achieves the highest
accuracies for both the origin grid accuracy and the destination
grid accuracy and the lowest errors for both total distance error
and average speed error, surpassing all other models. This indi-
cates that FACT can effectively adhere to conditional constraints,
generating trajectories that start and end at the desired locations
with remarkable precision. The results also show the reason for
the superiority of our model in terms of generation quality. In con-
trast, traditional models like CVAE and CGAN perform significantly
worse, demonstrating their limitations in understanding condition
guidance.

We further conduct a single-feature analysis on the condition
variables to evaluate the controllability of each feature, as defined
in Equation 12. As shown in Table 3, we employ mutual informa-
tion to quantify the relationship between generated trajectories
and condition guidance, where higher mutual information values
indicate stronger dependencies.

The results reveal that the highest mutual information values
correspond to the oID (4.90) and dID (4.88) features, suggesting that
the model is particularly sensitive to these inputs when generating
trajectories. These features play a pivotal role in shaping the overall
spatial structure, ensuring the generated trajectories align with real-
world movement patterns. Conversely, certain features, such as

Table 3: Single feature study.

Variable td tt tl oID dID

Mutual Information 0.86 1.31 0.77 4.90 4.88

total distance and total length, exhibit weaker influence, indicating
potential areas for optimization and further refinement.

5.4 Ablation Study (RQ3)
The ablation studies delve into the contributions of key components
in FACT, aiming to understand their impact on model performance.
Table 4 highlights that both the condition variables 𝒄 and the adap-
tive resampling (AR) module are critical for achieving optimal
trajectory generation quality. The analysis also evaluates alterna-
tive transformer-based architectures and condition fusion strategies
to discern the significance of the TDFormer block.

The absence of condition variables (FACT w/o c) leads to a pro-
nounced drop in performance, evidenced by higher density errors
and a notable reduction in the pattern score. This underscores the
pivotal role of 𝒄 in providing essential spatial-temporal guidance
to the generative process. The degradation in metrics indicates

Table 4: Ablation study on FACT.

Metrics
Xi’an

Density (↓) Pattern (↑) # Params (million)

FACT w/o AR 0.0015 0.8706 8.0518
FACT w/o 𝒄 0.0049 0.8570 5.4780

FACT-𝒄all 0.0014 0.8717 5.7990
FACT-𝒄less 0.0014 0.8717 5.7988
FACT-𝒄 0.0037 0.8689 5.7983

FACT-Cross Attention 0.0029 0.8652 5.8020
FACT-In-Context 0.0037 0.8601 5.4487
FACT-adaTLN 0.0027 0.8659 5.7988
FACT 0.0014 0.8717 5.7988

Bold shows the best performance and underline shows the second-best. ↓:
lower is better, ↑: higher is better.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

that condition variables are indispensable for preserving trajec-
tory fidelity and ensuring consistency with the input guidance.
Excluding the adaptive resampling module (FACT w/o AR) results
in a slightly higher density error compared to the full model but
achieves the second-best overall performance. However, this comes
at a significant cost to model efficiency, as indicated by a 38.5%
increase in parameter count. This highlights the trade-off between
maintaining model compactness and achieving optimal trajectory
generation quality. The AR module’s contribution lies in efficiently
handling trajectory data while minimizing computational overhead.

Further analysis of different condition settings reveals that simpli-
fying condition variables by reducing redundant features maintains
comparable performance. However, real-world applications pose
challenges, as the absence of certain key features for guidance can
hinder the model’s ability to achieve optimal results.

The TDFormer block outperforms alternative transformer vari-
ants, including Cross Attention (FACT-Cross Attention) and In-
Context Conditioning (FACT-In-Context). Both alternatives ex-
hibit higher density errors and lower pattern scores, reflecting their
limitations in effectively fusing condition information. These results
underscore the superiority of TDFormer in leveraging condition
variables for accurate and high-quality trajectory generation.

The FACT-adaTLN variant, which employs an adaptive tra-
jectory layer normalization without zero-initialization, exhibits
slightly better density error compared to other ablated models but
falls short with FACT which applies zero-initialization. This demon-
strates that while adaTLN aids feature adaptation, the absence of
zero-initialization compromises optimization stability and limits the
model’s ability to capture intricate trajectory patterns effectively.

5.5 Model Scaling and Dataset scaling (RQ4)
The analysis of dataset scaling and model scaling provides insights
into how data quantity and model capacity affect performance. In
real-world scenarios, trajectory data is often scarce. As shown in
Table 5, expanding the dataset from 25% to 100% leads to substantial
performance gains across all metrics, highlighting the pivotal role
of data volume in enhancing model effectiveness. More notably,
even when trained on just 50% of the dataset, FACT generates trajec-
tories that closely resemble real-world movements, demonstrating
its robustness in data-limited settings, a scenario of practical im-
portance.

Furthermore, we investigate model scaling, recognizing that in-
creasing model depth enhances performance, yet determining the
optimal depth for practical applications remains essential. In FACT,
we employ a sequence of 𝑁 TDFormer blocks and each operates

Table 5: Dataset scaling study on FACT.

Dataset ratio
Xi’an

Density (↓) Length (↓) Pattern (↑)

25% 0.0054 0.0167 0.8201
50% 0.0020 0.0074 0.8699
75% 0.0016 0.0072 0.8710
100% 0.0014 0.0069 0.8717

↓: lower is better, ↑: higher is better.

200K 400K 600K 800K

Training Steps

2

4

6

8

D
en

si
ty

 E
rr

or
(×

 1
0

3)

Density Error vs Training Steps

FACT­S
FACT­M
FACT­L

Figure 5: Model scaling.

with a hidden dimension size 𝑑 . Following the approach in DiT [27],
we use standard transformer configurations that jointly scale 𝑁 ,
𝑑 , and the number of attention heads. Specifically, we use three
configurations: FACT-S, FACT-M, and FACT-L. These configura-
tions cover a broad range of model sizes, enabling us to evaluate
the scaling performance. The details of these configurations are
provided in Appendix C.

As illustrated in Figure 5, which compares different model sizes
(e.g., FACT-S/M/L), the results emphasize the crucial role of model
capacity in performance improvement. Larger models, such as
FACT-M, consistently surpass their smaller counterparts at all train-
ing stages, as indicated by the reduction in density error. This sug-
gests that scaling up the model strengthens its learning and trajec-
tory generation capabilities. However, as the model size continues
to increase, it eventually reaches a saturation point, exemplified by
FACT-L, beyond which further expansion provides no additional
performance benefits, making excessive scaling unnecessary.

Together, these findings highlight the synergistic effect of dataset
scaling and model scaling: larger datasets provide richer informa-
tion for learning, while larger models are better equipped to lever-
age this information to achieve superior performance.

6 Conclusion
This work proposes FACT, a high-fidelity and controllable trajec-
tory generation framework, which leverages three key techniques:
the TDFormer block with adaTLN-Zero mechanism for the efficient
denoising process, well-defined condition variables for precise guid-
ance, and the adaptive resampling strategy to reduce computational
complexity. Trajectory data is map-matched, and adaptively resam-
pled before adding noise for training. FACT is trained to recon-
struct trajectory from noisy data through its conditional guidance,
and effectively denoises the random Gaussian noise by leveraging
the condition variable to generate trajectory data. Based on the
rigorous process, FACT provides a robust solution for generating
high-quality trajectories with fine-grained control over the process.
Extensive experiments on real-world trajectory datasets validate
FACT’s superiority over existing methods, showing the superiority
of TDFomer block over U-net architecture. Well-designed condition
variables precisely guide the generation and achieve efficient con-
trollability. Additionally, the scalability of FACT is demonstrated
across different datasets and model sizes. Future work will focus on
extending the framework to other types of spatial-temporal data to
address a broader range of application domains.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

FACT: High-Fidelity and Controllable Trajectory Data Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. 2022. Deep

Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing
Flows, Energy-Based and Autoregressive Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 11 (2022), 7327–7347. https://doi.org/10.
1109/TPAMI.2021.3116668

[2] Zhipeng Cai, Zuobin Xiong, Honghui Xu, Peng Wang, Wei Li, and Yi Pan. 2021.
Generative Adversarial Networks: A Survey Toward Private and Secure Applica-
tions. ACM Computing Surveys (CSUR) 54, 6 (2021), 1–38.

[3] Pu Cao, Feng Zhou, Qing Song, and Lu Yang. 2024. Controllable Generation
with Text-to-Image Diffusion Models: A Survey. arXiv preprint arXiv:2403.04279
(2024).

[4] Ayele Gobezie Chekol and Marta Sintayehu Fufa. 2022. A survey on next location
prediction techniques, applications, and challenges. EURASIP Journal on Wireless
Communications and Networking 2022, 1 (Mar. 2022), 29.

[5] Xiaobo Chen, Huanjia Zhang, Feng Zhao, Yu Hu, Chenkai Tan, and Jian Yang.
2022. Intention-Aware Vehicle Trajectory Prediction Based on Spatial-Temporal
Dynamic Attention Network for Internet of Vehicles. IEEE Transactions on
Intelligent Transportation Systems 23, 10 (2022), 19471–19483.

[6] Hari Prasanna Das, Ryan Tran, Japjot Singh, Xiangyu Yue, Geoffrey Tison, Al-
berto Sangiovanni-Vincentelli, and Costas J Spanos. 2022. Conditional Synthetic
Data Generation for Robust Machine Learning Applications with Limited Pan-
demic Data. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36.
11792–11800.

[7] Bangchao Deng, Bingqing Qu, Pengyang Wang, Dingqi Yang, Benjamin
Fankhauser, and Philippe Cudre-Mauroux. 2024. REPLAY: Modeling Time-
Varying Temporal Regularities of Human Mobility for Location Prediction over
Sparse Trajectories. arXiv preprint arXiv:2402.16310 (2024).

[8] Wenhao Ding, Mengdi Xu, and Ding Zhao. 2020. CMTS: A Conditional Multiple
Trajectory Synthesizer for Generating Safety-Critical Driving Scenarios. In 2020
IEEE International Conference on Robotics and Automation (ICRA). 4314–4321.
https://doi.org/10.1109/ICRA40945.2020.9197145

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2021. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In International Conference on Learning
Representations.

[10] Yuntao Du, Yujia Hu, Zhikun Zhang, Ziquan Fang, Lu Chen, Baihua Zheng, and
Yunjun Gao. 2023. LDPTrace: Locally Differentially Private Trajectory Synthesis.
Proceedings of the VLDB Endowment 16, 8 (2023), 1897–1909.

[11] Ben Fei, Zhaoyang Lyu, Liang Pan, Junzhe Zhang, Weidong Yang, Tianyue Luo,
Bo Zhang, and Bo Dai. 2023. Generative Diffusion Prior for Unified Image
Restoration and Enhancement. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 9935–9946.

[12] Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, and Yong Li. 2020.
Learning to Simulate Human Mobility. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining. 3426–3433.

[13] P Goyal. 2017. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.
arXiv preprint arXiv:1706.02677 (2017).

[14] JonathanHo, Ajay Jain, and Pieter Abbeel. 2020. DenoisingDiffusion Probabilistic
Models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.

[15] Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li,
Zhenhui Ye, Jinglin Liu, Xiang Yin, and Zhou Zhao. 2023. Make-An-Audio: Text-
To-Audio Generation with Prompt-Enhanced Diffusion Models. In International
Conference on Machine Learning. PMLR, 13916–13932.

[16] Bin Jiang, Jianqiang Li, Guanghui Yue, and Houbing Song. 2021. Differential
Privacy for Industrial Internet of Things: Opportunities, Applications, and Chal-
lenges. IEEE Internet of Things Journal 8, 13 (2021), 10430–10451.

[17] Hongbo Jiang, Jie Li, Ping Zhao, Fanzi Zeng, Zhu Xiao, and Arun Iyengar. 2021.
Location Privacy-preserving Mechanisms in Location-based Services: A Com-
prehensive Survey. ACM Computing Surveys (CSUR) 54, 1 (2021), 1–36.

[18] Jiawei Jiang, Dayan Pan, Houxing Ren, Xiaohan Jiang, Chao Li, and Jingyuan
Wang. 2023. Self-supervised Trajectory Representation Learning with Temporal
Regularities and Travel Semantics. In 2023 IEEE 39th international conference on
data engineering (ICDE). IEEE, 843–855.

[19] Gwanghyun Kim and Se Young Chun. 2023. DATID-3D: Diversity-Preserved
Domain Adaptation Using Text-to-Image Diffusion for 3D Generative Model. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 14203–14213.

[20] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2020.
DiffWave: A Versatile Diffusion Model for Audio Synthesis. In International
Conference on Learning Representations.

[21] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS
Torr, and Manmohan Chandraker. 2017. DESIRE: Distant Future Prediction in
Dynamic Scenes with Interacting Agents. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 336–345.

[22] Mingqian Li, Panrong Tong, Mo Li, Zhongming Jin, Jianqiang Huang, and Xian-
Sheng Hua. 2021. Traffic Flow Prediction with Vehicle Trajectories. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35. 294–302.

[23] Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, and Simon Lucey.
2018. ST-GAN: Spatial Transformer Generative Adversarial Networks for Image
Compositing. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[24] Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, and Luca Pappalardo. 2021. A
Survey on Deep Learning for Human Mobility. ACM Computing Surveys (CSUR)
55, 1 (2021), 1–44.

[25] Mehdi Mirza. 2014. Conditional Generative Adversarial Nets. arXiv preprint
arXiv:1411.1784 (2014).

[26] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved Denoising
Diffusion Probabilistic Models. In International conference on machine learning.
PMLR, 8162–8171.

[27] William Peebles and Saining Xie. 2023. Scalable Diffusion Models with Trans-
formers. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 4195–4205.

[28] Yifan Pu, Zhuofan Xia, Jiayi Guo, Dongchen Han, Qixiu Li, Duo Li, Yuhui Yuan,
Ji Li, Yizeng Han, Shiji Song, et al. 2024. Efficient Diffusion Transformer with
Step-wise Dynamic Attention Mediators. arXiv preprint arXiv:2408.05710 (2024).

[29] Jinmeng Rao, Song Gao, Yuhao Kang, and Qunying Huang. 2020. LSTM-TrajGAN:
A Deep Learning Approach to Trajectory Privacy Protection. In 11th International
Conference on Geographic Information Science (GIScience 2021) - Part I (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 177), Krzysztof Janowicz and
Judith A. Verstegen (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 12:1–12:17. https://doi.org/10.4230/LIPIcs.GIScience.2021.I.
12

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[31] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim
Salimans, David Fleet, and Mohammad Norouzi. 2022. Palette: Image-to-Image
Diffusion Models. In ACM SIGGRAPH 2022 conference proceedings. 1–10.

[32] Hongzhi Shi, Quanming Yao, Qi Guo, Yaguang Li, Lingyu Zhang, Jieping Ye, Yong
Li, and Yan Liu. 2020. Predicting Origin-Destination Flow via Multi-Perspective
Graph Convolutional Network. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1818–1821. https://doi.org/10.1109/ICDE48307.2020.00178

[33] Filippo Simini, Gianni Barlacchi, Massimilano Luca, and Luca Pappalardo. 2021.
A Deep Gravity model for mobility flows generation. Nature communications 12,
1 (2021), 6576.

[34] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. In
International Conference on Machine Learning. PMLR, 2256–2265.

[35] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion
Implicit Models. arXiv preprint arXiv:2010.02502 (2020).

[36] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Ste-
fano Ermon, and Ben Poole. 2020. Score-Based Generative Modeling through
Stochastic Differential Equations. arXiv preprint arXiv:2011.13456 (2020).

[37] Zhenyu Tao, Wei Xu, and Xiaohu You. 2024. Map2Traj: Street Map Piloted Zero-
shot Trajectory Generation with DiffusionModel. arXiv preprint arXiv:2407.19765
(2024).

[38] Anwaar Ulhaq and Naveed Akhtar. 2022. Efficient Diffusion Models for Vision:
A Survey. arXiv preprint arXiv:2210.09292 (2022).

[39] Sheng Wang, Zhifeng Bao, J Shane Culpepper, and Gao Cong. 2020. A Sur-
vey on Trajectory Data Management, Analytics, and Learning. arXiv preprint
arXiv:2003.11547 (2020).

[40] Xingrui Wang, Xinyu Liu, Ziteng Lu, and Hanfang Yang. 2021. Large Scale GPS
Trajectory Generation Using Map Based on Two Stage GAN. Journal of Data
Science 19, 1 (2021), 126–141.

[41] Yu Wang, Tongya Zheng, Shunyu Liu, Zunlei Feng, Kaixuan Chen, Yunzhi Hao,
and Mingli Song. 2024. Spatiotemporal-Augmented Graph Neural Networks
for Human Mobility Simulation. IEEE Transactions on Knowledge and Data
Engineering (2024).

[42] Tonglong Wei, Youfang Lin, Shengnan Guo, Yan Lin, Yiheng Huang, Chenyang
Xiang, Yuqing Bai, and Huaiyu Wan. 2024. Diff-RNTraj: A Structure-aware
Diffusion Model for Road Network-constrained Trajectory Generation. IEEE
Transactions on Knowledge and Data Engineering (2024), 1–15. https://doi.org/
10.1109/TKDE.2024.3460051

[43] Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li,
Jian Guo, Nan Duan, Weizhu Chen, et al. 2023. AR-Diffusion: Auto-Regressive
Diffusion Model for Text Generation. Advances in Neural Information Processing
Systems 36 (2023), 39957–39974.

[44] Liu Xi, Chen Hanzhou, and Andris Clio. 2018. trajGANs: using generative
adversarial networks for geo-privacy protection of trajectory data. Vision paper
(2018).

9

https://doi.org/10.1109/TPAMI.2021.3116668
https://doi.org/10.1109/TPAMI.2021.3116668
https://doi.org/10.1109/ICRA40945.2020.9197145
https://doi.org/10.4230/LIPIcs.GIScience.2021.I.12
https://doi.org/10.4230/LIPIcs.GIScience.2021.I.12
https://doi.org/10.1109/ICDE48307.2020.00178
https://doi.org/10.1109/TKDE.2024.3460051
https://doi.org/10.1109/TKDE.2024.3460051

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[45] Tianqi Xia, Xuan Song, Zipei Fan, Hiroshi Kanasugi, QuanJun Chen, Renhe
Jiang, and Ryosuke Shibasaki. 2018. DeepRailway: A Deep Learning System for
Forecasting Railway Traffic. In 2018 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR). 51–56. https://doi.org/10.1109/MIPR.2018.00017

[46] Gang Xiong, Zhishuai Li, Meihua Zhao, Yu Zhang, Qinghai Miao, Yisheng Lv,
and Fei-Yue Wang. 2024. TrajSGAN: A Semantic-Guiding Adversarial Network
for Urban Trajectory Generation. IEEE Transactions on Computational Social
Systems 11, 2 (2024), 1733–1743. https://doi.org/10.1109/TCSS.2023.3235923

[47] Yuan Yuan, Jingtao Ding, Chenyang Shao, Depeng Jin, and Yong Li. 2023. Spatio-
Temporal Diffusion Point Processes. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 3173–3184.

[48] Yuan Yuan, Jingtao Ding, Huandong Wang, Depeng Jin, and Yong Li. 2022. Activ-
ity Trajectory Generation via Modeling Spatiotemporal Dynamics. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
4752–4762.

[49] Kunpeng Zhang, Xiaoliang Feng, Lan Wu, and Zhengbing He. 2022. Trajectory
Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention
Transformer. IEEE Transactions on Intelligent Transportation Systems 23, 11 (2022),
22343–22353.

[50] Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang,
Fan Wang, and Yang You. 2024. Dynamic Diffusion Transformer. arXiv preprint
arXiv:2410.03456 (2024).

[51] Yuanshao Zhu, Yongchao Ye, Yi Liu, and James J. Q. Yu. 2022. Cross-Area
Travel Time Uncertainty Estimation From Trajectory Data: A Federated Learning
Approach. IEEE Transactions on Intelligent Transportation Systems 23, 12 (Dec.
2022), 24966–24978.

[52] Yuanshao Zhu, Yongchao Ye, Shiyao Zhang, Xiangyu Zhao, and James Yu. 2023.
DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model. In Ad-
vances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates, Inc.,
65168–65188.

[53] Yuanshao Zhu, James Jianqiao Yu, Xiangyu Zhao, Qidong Liu, Yongchao Ye,
Wei Chen, Zijian Zhang, Xuetao Wei, and Yuxuan Liang. 2024. ControlTraj:
Controllable Trajectory Generation with Topology-Constrained Diffusion Model.
In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4676–4687.

10

https://doi.org/10.1109/MIPR.2018.00017
https://doi.org/10.1109/TCSS.2023.3235923

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

FACT: High-Fidelity and Controllable Trajectory Data Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A Design Principle of TDFormer Block
The TDFormer block is a novel architectural design that integrates
adaptive Trajectory Layer Normalization (adaTLN) with Multi-
Head Self-Attention (MHSA) to enhance the modeling of trajectory-
specific conditions and spatial-temporal dependencies. By combin-
ing these two components, TDFormer enables precise trajectory
generation while maintaining high fidelity and adaptability to vari-
ous motion constraints. The adaTLN mechanism provides dynamic
normalization conditioned on trajectory-specific contexts, ensuring
that the model can generalize across different trajectory patterns.
Meanwhile, MHSA captures intricate dependencies within the tra-
jectory sequences, enabling the model to recognize both short-term
and long-term relationships. This synergistic integration ensures a
robust and structured representation of trajectory data, facilitating
more accurate and controlled generation.

The TDFormer block is primarily composed of two key modules:
MHSA and adaTLN, each serving a distinct role in the trajectory
generation process. MHSA is responsible for extracting spatial-
temporal dependencies by computing attention scores across mul-
tiple heads, effectively capturing both local and global trajectory
correlations. This mechanism allows different attention heads to
focus on different aspects of the trajectory data, ensuring a compre-
hensive feature representation. On the other hand, adaTLN serves
as a condition-driven normalization strategy, allowing the model to
adapt dynamically to different trajectory conditions. By introducing
normalization parameters that vary according to trajectory-specific
context, adaTLN provides greater flexibility in controlling trajectory
generation.

MHSA plays a pivotal role in encoding trajectory sequences by
facilitating the aggregation of multi-scale information. Traditional
sequence models struggle to balance short-term motion variations
with long-term dependencies, but MHSA overcomes this challenge
by leveraging multiple attention heads that process information at
varying granularities. This ability to model complex relationships
within trajectory sequences makes MHSA particularly well-suited
for generative tasks that require high fidelity and contextual con-
sistency. By integrating MHSA within the TDFormer block, the
model can dynamically adjust its attention distribution, ensuring
that trajectory features are effectively captured and utilized for
generation.

The adaTLN mechanism further enhances the adaptability of
TDFormer by incorporating condition-specific normalization adjust-
ments. Unlike conventional layer normalization techniques, which
apply fixed normalization parameters, adaTLN dynamically adjusts
the scale (𝜸) and shift (𝜷) parameters based on external trajectory
conditions. This mechanism is implemented using a scale-and-shift
module, which processes embeddings from the time step 𝑡 and the
condition 𝑐 to compute the appropriate transformation parameters.
By aligning the normalization process with trajectory conditions,
adaTLN ensures that the generated trajectories adhere to specified
constraints while preserving natural motion patterns.

To further enhance model stability and adaptability, TDFormer
incorporates dimension-wise scaling parameters (𝜶) just before
each residual connection. These scaling parameters play a crucial
role in modulating the contribution of different components during
the training process. By initializing 𝜶 to zero at the beginning of

training, we suppress the premature influence of newly introduced
components, allowing the model to gradually adapt to conditional
variations. As training progresses, 𝜶 is optimized to control the
magnitude of conditional modifications, ensuring progressive adap-
tation while maintaining training stability. This strategy not only
prevents sudden shifts in trajectory representations but also im-
proves the convergence properties of the model.

The flow of these parameters within the TDFormer block follows
a structured process, where condition variables are first embedded
and passed through a multi-layer perceptron (MLP) to generate the
necessary normalization parameters. The computed scale-and-shift
parameters are then used to adjust the trajectory representations,
ensuring that the generated trajectories are contextually aligned
with the given conditions.

By leveraging the combination of MHSA for dependency model-
ing and adaTLN for conditional normalization, TDFormer ensures
that generated trajectories adhere to realistic spatial-temporal con-
straints while preserving fine-grained controllability. Furthermore,
the integration of adaptive scaling mechanisms provides additional
training stability, making TDFormer well-suited for large-scale tra-
jectory prediction and synthesis tasks. Through this structured and
iterative approach, the TDFormer block significantly enhances the
fidelity, interpretability, and robustness of trajectory generation
models.

B Details of Trajectory Conditions
Carefully designed guidance variables, such as spatial-temporal
constraints or semantic tags, are indispensable for effective train-
ing pipelines to achieve fine-grained and controllable trajectory
generation. These variables provide structured supervision, en-
abling models to align generated trajectories with user-specified
conditions while maintaining high fidelity. By incorporating these
guidance variables, the generative model can learn not only the
underlying motion patterns but also the contextual dependencies
essential for realistic and diverse trajectory synthesis.

Guidance variables are particularly crucial for training, as they
serve as external control signals that enhance the controllability,
interpretability, and adaptability of the generated outputs. Without
these well-defined constraints, the model may produce trajectories
that are plausible but lack contextual relevance, leading to limited
practical applicability. Therefore, it is essential to carefully design
condition variables that effectively guide both the training and infer-
ence processes of the generative model. These condition variables
help steer the model toward generating realistic, context-aware tra-
jectories that adhere to specific constraints, ensuring high-quality
and meaningful outputs.

To achieve this, we introduce two forms of condition variables:
a simplified version that includes a comprehensive set of trajectory
descriptors, and a real-world version that captures only the most
critical factors for practical applications.

𝒄less = {dt, td, tt, tl, oID, dID}, (18)
𝒄 = {dt, oID, dID}. (19)

Here, 𝒄less represents the full set of condition variables used for
trajectory generation. In contrast, the real-world condition variables
𝒄 represent a minimal yet practical subset, including only departure

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

time (dt) and the origin-destination pair (oID, dID). This reduced
set reflects the most commonly available and actionable features in
real-world applications, ensuring that the generative model remains
efficient and adaptable while still producing trajectories that align
with observed movement patterns.

By distinguishing between these two sets of condition variables,
we provide a flexible approach to trajectory generation, allowing
models to operate in both highly controlled and more realistic,
data-driven environments. The inclusion of spatial-temporal con-
straints improves the quality, realism, and usability of the generated
trajectories, making them valuable for applications such as traffic
simulation, human mobility analysis, and autonomous navigation.

C FACT Implementation Details
In FACT, we perform extensive experiments to determine the opti-
mal parameter and training settings. Table 6 presents the selected
hyperparameter values along with their reference ranges, derived
from both empirical results in our study and general practices in
trajectory generation models.

Table 6: Hyperparameters for FACT.

Parameter Setting value Refer range

Diffusion Steps 500 300 ∼ 500
Skip steps 5 1 ∼ 10
Hidden dimension 128 ≥ 64
𝛽 (linear schedule) 0.0001 ∼ 0.05 –
Batch size 512 ≥ 64
Transformer block 18 10 ∼ 28

Besides, based on varying model depths and sizes, we define
three model variants—FACT-S, FACT-M, and FACT-L—to facilitate
the discussion on model scaling, as illustrated in Table 7.

Table 7: Details of FACT models. We follow DiT [27] model
configurations for the Small (S), Medium (M), and Large (L)
variants.

Model Layers 𝑁 Hidden size 𝑑 Heads GFlops

FACT-S 10 64 8 0.2
FACT-M 18 128 16 1.4
FACT-L 28 128 16 2.2

D Experiments and Setup
We conduct the experiments using PyTorch. The model is trained
on four NVIDIA A100 40GB GPUs.

D.1 Datasets
We verify the performance of FACT and baseline models across
three distinct urban datasets: Chengdu, Xi’an, and Porto. presents
the statistical overview of these datasets is shown in Table 8.

We trained the model on three taxi trajectory datasets from
Chengdu, Xi’an cities2 and Porto3. The three datasets represent
2https://outreach.didichuxing.com/
3https://www.kaggle.com/datasets/crailtap/taxi-trajectory/

Table 8: Statistics of the Real-world Trajectory Datasets.

Dataset Chengdu Xi’an Porto

Trajectory Number 3 731 344 2 255 474 1 414 164
Average Time 13.51 min 16.11 min 12.19 min
Average Distance 3.56 km 3.49 km 3.96 km
Sampling Interval 3 seconds 3 seconds 15 seconds

real-world urban trajectories from Chengdu, Xi’an, and Porto, each
with distinct characteristics. Chengdu has the largest trajectory
count (3,731,344) with relatively short average distances (3.56 km)
and durations (13.51 min), representing high-frequency, short trips.
Xi’an includes 2,255,474 trajectories with the highest average du-
ration (16.11 min), reflecting more complex travel patterns. Porto,
with the fewest trajectories (1,414,164), shows the longest average
distance (3.96 km) but the shortest average duration (12.19 min),
likely due to its urban layout. These datasets offer diverse scenarios
to evaluate the adaptability of trajectory generation models.

We exclude short trajectories as they lack sufficient context to
represent complete travel patterns. Specifically, trajectories with
lengths under 120 in Chengdu and Xi’an, and under 24 in Porto,
which correspond to approximately 6 minutes of real-world travel,
are removed. To ensure consistency and quality in the data, the re-
maining trajectories are then processed using adaptive resampling.

D.2 Baselines
• CVAE [8]: A VAE with four convolutional layers and two linear

layers is built for trajectory generation. Condition variables are
incorporated during training. The model encodes and decodes
the trajectories, and the trained decoder is used for generating
new samples.

• CGAN [25]: A GAN with four convolutional layers and two lin-
ear layers is used for trajectory generation. Condition variables
are included in the training process. The generator receives ran-
domGaussian noise and attempts to generate fake samples, while
the discriminator distinguishes between real and fake samples.
The trained generator is used for data generation.

• DiffWave [20]: DiffWave employs aWavenet structure designed
for sequence synthesis using dilated convolutions. It uses 16
residual connected blocks, each containing a bi-directional di-
lated convolution, which is summed using sigmoid and tanh
activations before being processed by a 1D convolutional neural
network (CNN).

• DiffTraj [52]: A diffusion model utilizing convolutional layers
and a U-net structure is designed to generate high-quality traffic
trajectories. Condition variables are integrated into the training
and inference process to guide the generation of trajectories.

• Diff-RNTraj [42]: A pre-trained Road-constraiNtTraj (RNTraj)
Vectorization module is employed to transform GPS points into
road-based representations, converting discrete representations
into vectors for training. This ensures that the generated trajec-
tories are constrained to the road network, enhancing fidelity.

• ControlTraj [53]: A pretrained Masked AutoEncoder (MAE)
encodes the topology information of road segments traversed by
trajectory data to improve fidelity. The topology information is

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

FACT: High-Fidelity and Controllable Trajectory Data Generation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

(a) Diff-RNTraj (b) ControlTraj

(c) FACT (d) Real

Figure 6: Visualization of generated trajectory dataset in Xi’an City.

used during both training and inference to guide the generation
process.

D.3 Evaluation Metrics
To quantify the similarity between generated and actual trajectories,
a rigorous evaluation of their resemblance is essential. We employ
Jensen-Shannon divergence (JSD) as a measure of trajectory quality.
JSD effectively compares the distributions of real and synthetic
trajectories, where a lower JSD value indicates a closer alignment
with the statistical properties of the original data. For evaluation,
we apply grid-based statistics by dividing the city into 16x16 grids
for distribution counting. The metrics are illustrated as below.

• Density error: The density error evaluates the geographic distri-
bution between the original dataset D and the generated dataset
D′. The evaluation is conducted based on discrete grids, which
are applied to the city.

• Length error: The length error measures the distribution of
trajectory distances. It is calculated by computing the distribution
difference in geo-distances between consecutive points in the
original and generated trajectories.

• Pattern score: The pattern score identifies the top-𝑛 grids that
occur most frequently. A higher pattern score indicates that more
of the top-𝑛 grids in the generated dataset align with those in the
original dataset, signifying higher distribution similarity. Here,
𝑛 is set to 25.

D.4 Visualization
As shown in Figure 6, three diffusion-based methods are selected to
compare the visualization of generation. Diffusion-based methods
can generate trajectories with higher similarity and perform well
on the whole city and areas of high-density trajectories covered
in green boxes. Compared to Diff-RNTraj and ControlTraj, FACT
reduces unrealistic and meaningless trajectories and shows higher
closeness to the road network, especially on sparse roads covered in
red boxes, further improving the generation quality. Although Diff-
RNTraj generates road-constrained trajectories, their distribution
is different from the original trajectories, leading to poor overall
performance. Furthermore, the visualization results illustrate the
ability to understand spatial-temporal dynamics for FACT, leading
to a more realistic generation.

D.5 Efficiency Study
Efficiency is a critical consideration for real-world applications,
where computational cost and scalability directly influence the fea-
sibility of deployment. Time and space complexity is crucial for the
application of the model in realistic scenarios. Therefore, we collect
the training and generation time of each model, as well as their
model size. Specifically, we choose Diff-RNTraj, ControlTraj,
and FACT for comparison, which remarkably outperforms other
baselines. We train each model by PyTorch framework with the
Adam optimizer for 200 epochs and a batch size of 256. For a more

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 9: Efficiency table for Top-3 Models.

Methods Diff-RNTraj ControlTraj
FACT

FACT FACT w/o AR

Training time (seconds / epoch) 623 1197 843 2126
Inference time (seconds / batch) 35 326 270 644
Params (million) 27.1774 8.1793 5.7988 8.0518
Density (↓) 0.0371 0.0031 0.0006 0.0008
Length (↓) 0.1078 0.0097 0.0044 0.0049
Pattern (↑) 0.6094 0.8547 0.8869 0.8854

Bold shows the best performance, and underline shows the second-best.↓: lower is better, ↑: higher is better

comprehensive comparison, we present both the time efficiency and
the data generation performance on the Chengdu dataset, partially
adopted from Table 1.

Based on the results in Table 9, the FACT model demonstrates
significant advantages in the number of model parameters com-
pared to Diff-RNTraj and ControlTraj. As one of the variants, FACT
w/o AR gets the longest training time and inference time due to
high time complexity without proper resampling. FACT achieves
the lowest number of parameters and competitive training and

inference time, making it the most lightweight and computation-
ally efficient option. Although Diff-RNTraj boasts the fastest train-
ing and inference times, its significantly higher parameter count
raises concerns about overall efficiency, particularly in resource-
constrained environments. Although Diff-RNTraj has the fastest
training and inference time, its significantly higher parameter count
raises concerns about overall efficiency, particularly in resource-
constrained environments. These results underscore the superiority
of the FACT architecture in terms of resource efficiency. Overall,
the FACT model offers a compelling balance of scalability and effi-
ciency.

14

	Abstract
	1 Introduction
	2 Related Work
	2.1 Diffusion Model for Trajectory Generation
	2.2 Conditional Generation
	2.3 Model Efficiency

	3 Preliminaries
	3.1 Problem Definition
	3.2 Diffusion Probabilistic Model
	3.3 Diffusion Transformer

	4 High-Fidelity and Controllable Trajectory Data Generation Framework
	4.1 FACT Overview
	4.2 TDFormer Block
	4.3 Trajectory Condition Design
	4.4 Adaptive Resampling Strategy
	4.5 Trajectory Generation

	5 Experiments
	5.1 Experimental Settings
	5.2 Overall Performance (RQ1)
	5.3 Controllable Generation (RQ2)
	5.4 Ablation Study (RQ3)
	5.5 Model Scaling and Dataset scaling (RQ4)

	6 Conclusion
	References
	A Design Principle of TDFormer Block
	B Details of Trajectory Conditions
	C FACT Implementation Details
	D Experiments and Setup
	D.1 Datasets
	D.2 Baselines
	D.3 Evaluation Metrics
	D.4 Visualization
	D.5 Efficiency Study

